Calderon problem for Maxwell's equations in two dimensions

被引:1
|
作者
Imanuvilov, Oleg Y. [1 ]
Yamamoto, Masahiro [2 ]
机构
[1] Colorado State Univ, Dept Math, 101 Weber Bldg, Ft Collins, CO 80523 USA
[2] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2016年 / 24卷 / 03期
基金
美国国家科学基金会;
关键词
Maxwell's equations; Dirichlet-to-Neumann map; uniqueness; BOUNDARY-VALUE PROBLEM; GLOBAL UNIQUENESS; CAUCHY DATA; LOCAL DATA; MAP;
D O I
10.1515/jiip-2015-0042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the global uniqueness in determination of the conductivity, the permeability and the permittivity of the two-dimensional Maxwell equations by the partial Dirichlet-to-Neumann map limited to an arbitrary subboundary.
引用
收藏
页码:351 / 355
页数:5
相关论文
共 50 条