EEG-Based Neonatal Sleep Stage Classification Using Ensemble Learning

被引:30
作者
Abbasi, Saadullah Farooq [1 ,2 ]
Jamil, Harun [3 ]
Chen, Wei [2 ]
机构
[1] Edinburgh Napier Univ, Sch Comp, Edinburgh EH10 5DT, Midlothian, Scotland
[2] Fudan Univ, Dept Elect Engn, Ctr Intelligent Med Elect, Shanghai 200433, Peoples R China
[3] Jeju Natl Univ, Dept Comp Engn, Jejusi 63243, Jeju Special Se, South Korea
来源
CMC-COMPUTERS MATERIALS & CONTINUA | 2022年 / 70卷 / 03期
关键词
Internet of things; machine learning; convolutional neural net-work; artificial intelligence; PRETERM;
D O I
10.32604/cmc.2022.020318
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sleep stage classification can provide important information regarding neonatal brain development and maturation. Visual annotation, using polysomnography (PSG), is considered as a gold standard for neonatal sleep stage classification. However, visual annotation is time consuming and needs professional neurologists. For this reason, an internet of things and ensemblebased automatic sleep stage classification has been proposed in this study. 12 EEG features, from 9 bipolar channels, were used to train and test the base classifiers including convolutional neural network, support vector machine, and multilayer perceptron. Bagging and stacking ensembles are then used to combine the outputs for final classification. The proposed algorithm can reach a mean kappa of 0.73 and 0.66 for 2-stage and 3-stage (wake, active sleep, and quiet sleep) classification, respectively. The proposed network works as a semi-real time application because a smoothing filter is used to hold the sleep stage for 3 min. The high-performance parameters and its ability to work in semi real-time makes it a promising candidate for use in hospitalized newborn infants.
引用
收藏
页码:4619 / 4633
页数:15
相关论文
共 31 条
[1]   Modelling of Uncertain System: A comparison study of Linear and Non-Linear Approaches [J].
Abba, S., I ;
Gaya, M. S. ;
Yakubu, M. L. ;
Zango, M. U. ;
Abdulkadir, R. A. ;
Saleh, M. A. ;
Hamza, A. N. ;
Abubakar, Ukashatu ;
Tukur, A., I ;
Wahab, N. A. .
2019 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2019, :283-288
[2]   EEG-Based Neonatal Sleep-Wake Classification Using Multilayer Perceptron Neural Network [J].
Abbasi, Saadullah Farooq ;
Ahmad, Jawad ;
Tahir, Ahsen ;
Awais, Muhammad ;
Chen, Chen ;
Irfan, Muhammad ;
Siddiqa, Hafiza Ayesha ;
Waqas, Abu Bakar ;
Long, Xi ;
Yin, Bin ;
Akbarzadeh, Saeed ;
Lu, Chunmei ;
Wang, Laishuan ;
Chen, Wei .
IEEE ACCESS, 2020, 8 :183025-183034
[3]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[4]   A convolutional neural network outperforming state-of-the-art sleep staging algorithms for both preterm and term infants [J].
Ansari, Amir H. ;
De Wel, Ofelie ;
Pillay, Kirubin ;
Dereymaeker, Anneleen ;
Jansen, Katrien ;
Van Huffel, Sabine ;
Naulaers, Gunnar ;
De Vos, Maarten .
JOURNAL OF NEURAL ENGINEERING, 2020, 17 (01)
[5]   Quiet sleep detection in preterm infants using deep convolutional neural networks [J].
Ansari, Amir Hossein ;
De Wel, Ofelie ;
Lavanga, Mario ;
Caicedo, Alexander ;
Dereymaeker, Anneleen ;
Jansen, Katrien ;
Vervisch, Jan ;
De Vos, Maarten ;
Naulaers, Gunnar ;
Van Huffel, Sabine .
JOURNAL OF NEURAL ENGINEERING, 2018, 15 (06)
[6]   Can pre-trained convolutional neural networks be directly used as a feature extractor for video-based neonatal sleep and wake classification? [J].
Awais, Muhammad ;
Long, Xi ;
Yin, Bin ;
Chen, Chen ;
Akbarzadeh, Saeed ;
Abbasi, Saadullah Farooq ;
Irfan, Muhammad ;
Lu, Chunmei ;
Wang, Xinhua ;
Wang, Laishuan ;
Chen, Wei .
BMC RESEARCH NOTES, 2020, 13 (01)
[7]   Novel Framework: Face Feature Selection Algorithm for Neonatal Facial and Related Attributes Recognition [J].
Awais, Muhammad ;
Chen, Chen ;
Long, Xi ;
Yin, Bin ;
Nawaz, Anum ;
Abbasi, Saadullah Farooq ;
Akbarzadeh, Saeed ;
Tao, Linkai ;
Lu, Chunmei ;
Wang, Laishuan ;
Aarts, Ronald M. ;
Chen, Wei .
IEEE ACCESS, 2020, 8 :59100-59113
[8]   An Automated Quiet Sleep Detection Approach in Preterm Infants as a Gateway to Assess Brain Maturation [J].
Dereymaeker, Anneleen ;
Pillay, Kirubin ;
Vervisch, Jan ;
Van Huffel, Sabine ;
Naulaers, Gunnar ;
Jansen, Katrien ;
De Vos, Maarten .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2017, 27 (06)
[9]   Ensemble methods in machine learning [J].
Dietterich, TG .
MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 :1-15
[10]  
Fraiwan L, 2017, 2017 IEEE 13TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & ITS APPLICATIONS (CSPA), P228, DOI 10.1109/CSPA.2017.8064956