A Modeling Procedure of the Broadband Dielectric Spectroscopy for Ionic Liquids

被引:23
作者
Bao, Xiue [1 ]
Liu, Song [2 ]
Ocket, Ilja [1 ,3 ]
Liu, Zhuangzhuang [4 ]
Schreurs, Dominique M. M. -P. [1 ]
Nauwelaers, Bart K. J. C. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Leuven, Belgium
[2] Nokia, Hangzhou 310014, Zhejiang, Peoples R China
[3] Interuniv Microelect Ctr, B-3001 Heverlee, Belgium
[4] Katholieke Univ Leuven, Mat Dept, B-3001 Leuven, Belgium
关键词
Cole-Cole equation; constant phase element; curve fitting; electrode polarization model; ionic liquids; IMPEDANCE SPECTROSCOPY; AC RESPONSE; PERMITTIVITY; DISPERSION;
D O I
10.1109/TNB.2018.2872535
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The dielectric spectroscopy (DS) measurement is an attractive noninvasive method to reveal the intrinsic information of biological materials and cell cultures. However, the presence of a double layer due to electrode polarization within the lower RF and microwave range significantly affects the accurate analysis of dielectric properties of ionic liquids. In this paper, we measure the broadband DS of five saline solutions with a microfluidic coplanar waveguide (CPW) transmission line sensor across the frequency range from 40 kHz to 110 GHz. Derived from a parallel-plate structure that is transformed from the quasi-TEM CPW sensor through a conformal mapping technique, a broadband spectroscopy modeling method is proposed, where a Cole-Cole function or a constant phase element formula is used depending on the ionic concentrations and the measurement window. Validation analysis on the five saline solutions demonstrates the capability of the modeling method in separating relaxation properties of the bulk sample from the double-layer effects.
引用
收藏
页码:387 / 393
页数:7
相关论文
共 38 条
[1]   Low Frequency Dielectric Properties of Human Blood [J].
Abdalla, S. .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2011, 10 (02) :113-120
[2]   Real-time monitoring of yeast cell division by dielectric spectroscopy [J].
Asami, K ;
Gheorghiu, E ;
Yonezawa, T .
BIOPHYSICAL JOURNAL, 1999, 76 (06) :3345-3348
[3]   Complex permittivity measurement as a new noninvasive tool for monitoring In vitro tissue engineering and cell signature through the detection of cell proliferation, differentiation, and pretissue formation [J].
Bagnaninchi, PO ;
Dikeakos, M ;
Veres, T ;
Tabrizian, M .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2004, 3 (04) :243-250
[4]  
Bao X., 2017, P 90 ARFTG C DIGEST, P1
[5]  
Bao XE, 2018, IEEE MTT S INT MICR, P903, DOI 10.1109/MWSYM.2018.8439349
[6]   SURFACE-TOPOGRAPHY AND IMPEDANCE OF METAL-ELECTROLYTE INTERFACES [J].
BATES, JB ;
CHU, YT ;
STRIBLING, WT .
PHYSICAL REVIEW LETTERS, 1988, 60 (07) :627-630
[7]   Electrochemical Impedance Spectroscopy on Interdigitated Gold Microelectrodes for Glycosylated Human Serum Albumin Characterization [J].
Bohli, Nadra ;
Chammem, Hanen ;
Meilhac, Olivier ;
Mora, Laurence ;
Abdelghani, Adnane .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (08) :676-681
[8]   Quantitative Permittivity Measurements of Nanoliter Liquid Volumes in Microfluidic Channels to 40 GHz [J].
Booth, James C. ;
Orloff, Nathan D. ;
Mateu, Jordi ;
Janezic, Michael ;
Rinehart, Matthew ;
Beall, James A. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2010, 59 (12) :3279-3288
[9]   Reduction of the contribution of electrode polarization effects in the radiowave dielectric measurements of highly conductive biological cell suspensions [J].
Bordi, F ;
Cametti, C ;
Gili, T .
BIOELECTROCHEMISTRY, 2001, 54 (01) :53-61
[10]   ON THE STATIC PERMITTIVITY OF DIPOLAR AND CONDUCTIVE MEDIA - AN EDUCATIONAL-APPROACH [J].
COELHO, R .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 131 :1136-1139