Construction of constant scalar curvature Kahler cone metrics

被引:5
|
作者
Keller, Julien [1 ]
Zheng, Kai [2 ]
机构
[1] Aix Marseille Univ, Inst Math Marseille, CNRS, Cent Marseille,UMR 7373, F-13453 Marseille, France
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
HERMITIAN-EINSTEIN METRICS; PARABOLIC STABLE BUNDLES; MONGE-AMPERE EQUATIONS; YANG-MILLS CONNECTIONS; RULED MANIFOLDS; VECTOR-BUNDLES; CONICAL SINGULARITIES; PROJECTIVE BUNDLES; SURFACES; INEQUALITIES;
D O I
10.1112/plms.12132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Over a compact Kahler manifold, we provide a Fredholm alternative result for the Lichnerowicz operator associated to a Kahler metric with conic singularities along a divisor. We deduce several existence results of constant scalar curvature Kahler metrics with conic singularities: existence result under small deformations of Kahler classes, existence result over a Fano manifold, existence result over certain ruled manifolds. In this last case, we consider the projectivization of a parabolic stable holomorphic bundle. This leads us to prove that the existing Hermitian-Einstein metric on this bundle enjoys a regularity property along the divisor on the base.
引用
收藏
页码:527 / 573
页数:47
相关论文
共 50 条