共 50 条
Construction of constant scalar curvature Kahler cone metrics
被引:5
|作者:
Keller, Julien
[1
]
Zheng, Kai
[2
]
机构:
[1] Aix Marseille Univ, Inst Math Marseille, CNRS, Cent Marseille,UMR 7373, F-13453 Marseille, France
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
基金:
英国工程与自然科学研究理事会;
欧盟地平线“2020”;
关键词:
HERMITIAN-EINSTEIN METRICS;
PARABOLIC STABLE BUNDLES;
MONGE-AMPERE EQUATIONS;
YANG-MILLS CONNECTIONS;
RULED MANIFOLDS;
VECTOR-BUNDLES;
CONICAL SINGULARITIES;
PROJECTIVE BUNDLES;
SURFACES;
INEQUALITIES;
D O I:
10.1112/plms.12132
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Over a compact Kahler manifold, we provide a Fredholm alternative result for the Lichnerowicz operator associated to a Kahler metric with conic singularities along a divisor. We deduce several existence results of constant scalar curvature Kahler metrics with conic singularities: existence result under small deformations of Kahler classes, existence result over a Fano manifold, existence result over certain ruled manifolds. In this last case, we consider the projectivization of a parabolic stable holomorphic bundle. This leads us to prove that the existing Hermitian-Einstein metric on this bundle enjoys a regularity property along the divisor on the base.
引用
收藏
页码:527 / 573
页数:47
相关论文