Synergistic effect of triphase interface and fluid control for efficient photosynthesis of residue-free H2O2

被引:28
作者
Huang, Huining [1 ,2 ]
Zhang, Qitao [1 ]
Shi, Run [2 ]
Su, Chenliang [1 ]
Wang, Yulin [2 ]
Zhao, Jiaqi [2 ]
Zhang, Tierui [2 ,3 ]
机构
[1] Shenzhen Univ, Inst Microscale Optoelect, Int Collaborat Lab Mat Optoelect Sci 2D Technol, Minist Educ, Shenzhen 518060, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2022年 / 317卷
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Photocatalysis; H2O2; Fluid triphase system; High concentration; Water disinfection; HYDROGEN-PEROXIDE; OXYGEN REDUCTION; CO2; REDUCTION; PHOTOCATALYSTS; PERSPECTIVE;
D O I
10.1016/j.apcatb.2022.121731
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solar-to-chemical energy conversion is a challenging subject for renewable energy storage. Solar-driven hydrogen peroxide (H2O2) synthesis is a sustainable and potentially economic technology. Despite great efforts in catalyst engineering, photocatalytic H(2)O(2 )production is usually limited by the sluggish oxygen diffusion and H(2)O(2 )decomposition side reactions, leading to poor apparent photocatalytic H(2)O(2 )production efficiency. Herein, we developed a fluid triphase system that enables both the efficient interfacial oxygen mass transfer and the inhibited H(2)O(2 )decomposition side reactions. Such a synergistic effect endowed a residue-free H(2)O(2 )pro-duction rate of 6.03 mu mol h(-1) from pure water and oxygen without using any sacrificial agent or additive, with over 120 h continuous irradiation stability. We further designed a photosynthesis-concentration tandem system to produce high concentration H2O2 (10 mM), which demonstrated an effective water disinfection capability as a representative application.
引用
收藏
页数:9
相关论文
共 47 条
[1]   A review on recent developments in electrochemical hydrogen peroxide synthesis with a critical assessment of perspectives and strategies [J].
Anantharaj, Sengeni ;
Pitchaimuthu, Sudhagar ;
Noda, Suguru .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2021, 287
[2]   Crafting Mussel-Inspired Metal Nanoparticle-Decorated Ultrathin Graphitic Carbon Nitride for the Degradation of Chemical Pollutants and Production of Chemical Resources [J].
Cai, Jingsheng ;
Huang, Jianying ;
Wang, Shanchi ;
Iocozzia, James ;
Sun, Zhongti ;
Sun, Jingyu ;
Yang, Yingkui ;
Lai, Yuekun ;
Lin, Zhiqun .
ADVANCED MATERIALS, 2019, 31 (15)
[3]   Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process [J].
Campos-Martin, Jose M. ;
Blanco-Brieva, Gema ;
Fierro, Jose L. G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (42) :6962-6984
[4]   Rational Design of Covalent Heptazine Frameworks with Spatially Separated Redox Centers for High-Efficiency Photocatalytic Hydrogen Peroxide Production [J].
Cheng, Hao ;
Lv, Haifeng ;
Cheng, Jun ;
Wang, Lei ;
Wu, Xiaojun ;
Xu, Hangxun .
ADVANCED MATERIALS, 2022, 34 (07)
[5]   Water Disinfection in Rural Areas Demands Unconventional Solar Technologies [J].
Chu, Chiheng ;
Ryberg, Eric C. ;
Loeb, Stephanie K. ;
Suh, Min-Jeong ;
Kim, Jae-Hong .
ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (05) :1187-1195
[6]  
Colmenares JC, 2017, CHEM SOC REV, V46, P6675, DOI 10.1039/c7cs00257b
[7]   Role of oxygen and superoxide radicals in promoting H2O2 production during VUV/UV radiation of water [J].
Du, Jinying ;
Wang, Chuang ;
Zhao, Zhiwei ;
Cui, Fuyi ;
Ou, Qin ;
Liu, Jie .
CHEMICAL ENGINEERING SCIENCE, 2021, 241
[8]   Advances and challenges in electrochemical CO2 reduction processes: an engineering and design perspective looking beyond new catalyst materials [J].
Garg, Sahil ;
Li, Mengran ;
Weber, Adam Z. ;
Ge, Lei ;
Li, Liye ;
Rudolph, Victor ;
Wang, Guoxiong ;
Rufford, Thomas E. .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (04) :1511-1544
[9]   Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst [J].
Gogoi, Satyabrat ;
Karak, Niranjan .
NANO-MICRO LETTERS, 2017, 9 (04)
[10]   Rapid Optimization of Photoredox Reactions for Continuous-Flow Systems Using Microscale Batch Technology [J].
Gonzalez-Esguevillas, Maria ;
Fernandez, David F. ;
Rincon, Juan A. ;
Barberis, Mario ;
de Frutos, Oscar ;
Mateos, Carlos ;
Garcia-Cerrada, Susana ;
Agejas, Javier ;
MacMillan, David W. C. .
ACS CENTRAL SCIENCE, 2021, 7 (07) :1126-1134