MOSER-TRUDINGER INEQUALITY ON CONFORMAL DISCS

被引:64
作者
Mancini, G. [1 ]
Sandeep, K. [2 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat, I-00146 Rome, Italy
[2] TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India
关键词
Moser-Trudinger inequality; conformal disc; SEMILINEAR ELLIPTIC EQUATION; NONPOSITIVE CURVATURE; SOBOLEV INEQUALITIES; COMPLETE METRICS; EXPONENT;
D O I
10.1142/S0219199710004111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that a sharp Moser-Trudinger inequality holds true on a conformal disc if and only if the metric is bounded from above by the Poincare metric. We also derive necessary and sufficient conditions for the validity of a sharp Moser-Trudinger inequality on a simply connected domain in R-2.
引用
收藏
页码:1055 / 1068
页数:14
相关论文
共 24 条
[1]   Trudinger type inequalities in RN and their best exponents [J].
Adachi, S ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (07) :2051-2057
[2]   On a version of Trudinger-Moser inequality with Mobius shift invariance [J].
Adimurthi ;
Tintarev, Kyril .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 39 (1-2) :203-212
[3]  
[Anonymous], 1969, Transl. Math. Monographs
[4]  
AVILES P, 1985, J DIFFER GEOM, V21, P269
[5]  
BAERNSTEIN A, 1994, SYM MATH, V35, P47
[6]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[7]   COMPLETE METRICS CONFORMAL TO THE HYPERBOLIC DISK [J].
BLAND, J ;
KALKA, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 97 (01) :128-132
[8]  
BRANSON TP, ARXIV07123905V2MATHA
[9]   NONTRIVIAL SOLUTION OF SEMILINEAR ELLIPTIC EQUATION WITH CRITICAL EXPONENT IN R2 [J].
CAO, DM .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1992, 17 (3-4) :407-435
[10]  
Cheng KS, 2000, CALC VAR PARTIAL DIF, V11, P203, DOI 10.1007/s005260000037