The impact of constitutive heterologous expression of a moss Na+ transporter on the metabolomes of rice and barley

被引:38
作者
Jacobs, Andrew
Lunde, Christina
Bacic, Antony
Tester, Mark
Roessner, Ute [1 ]
机构
[1] Univ Melbourne, Sch Bot, Australian Ctr Plant Funct Genom, Melbourne, Vic 3010, Australia
[2] Univ Adelaide, Sch Agr Food & Wine, Glen Osmond, SA 5064, Australia
[3] Royal Vet & Agr Univ, Dept Plant Biol, Plant Biochem Lab, Copenhagen C, Denmark
基金
澳大利亚研究理事会;
关键词
GC-MS; metabolomics; ionomics; genetically-modified organism; Physcomitrella; sodium-pumping ATPase;
D O I
10.1007/s11306-007-0056-4
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The metabolic profiles of rice and barley plants constitutively expressing a sodium-pumping ATPase (PpENA1) isolated from the bryophyte Physcomitrella patens were examined using GC-MS. Quantitative real-time PCR (qRT-PCR) was used to determine the mRNA levels of PpENA1 in root and leaf tissues of the transgenic rice and barley lines. PpENA1 mRNA levels were significantly higher in rice lines than in barley lines with the same dual CaMV35S promoter controlling PpENA1 transcription in both species. In rice, PpENA1 mRNA levels were greatest in the shoot whilst levels were greatest in the roots of barley. Metabolite profiles were determined in the flag leaf of both rice and barley plants grown under controlled conditions. A large proportion of the measured metabolites were significantly altered in the transgenic lines compared to null-segregating lines, revealing a considerable impact of expression of the sodium-pumping ATPase (PpENA1) transgene on metabolism. Interestingly, the metabolite changes were different between rice and barley, indicating different responses of rice and barley to the introduction of this gene.
引用
收藏
页码:307 / 317
页数:11
相关论文
共 39 条
[1]   ANALYSIS OF GAMETOPHYTIC DEVELOPMENT IN THE MOSS, PHYSCOMITRELLA-PATENS, USING AUXIN AND CYTOKININ RESISTANT MUTANTS [J].
ASHTON, NW ;
GRIMSLEY, NH ;
COVE, DJ .
PLANTA, 1979, 144 (05) :427-435
[2]   ISOLATION AND PRELIMINARY CHARACTERIZATION OF AUXOTROPHIC AND ANALOG RESISTANT MUTANTS OF MOSS, PHYSCOMITRELLA-PATENS [J].
ASHTON, NW ;
COVE, DJ .
MOLECULAR & GENERAL GENETICS, 1977, 154 (01) :87-95
[3]   Purdue Ionomics Information Management System. An integrated functional genomics platform [J].
Baxter, Ivan ;
Ouzzani, Mourad ;
Orcun, Seza ;
Kennedy, Brad ;
Jandhyala, Shrinivas S. ;
Salt, David E. .
PLANT PHYSIOLOGY, 2007, 143 (02) :600-611
[4]   Molecular cloning and characterization of a sodium-pump ATPase of the moss Physcomitrella patens [J].
Benito, B ;
Rodríguez-Navarro, A .
PLANT JOURNAL, 2003, 36 (03) :382-389
[5]   Potential of metabolomics as a functional genomics tool [J].
Bino, RJ ;
Hall, RD ;
Fiehn, O ;
Kopka, J ;
Saito, K ;
Draper, J ;
Nikolau, BJ ;
Mendes, P ;
Roessner-Tunali, U ;
Beale, MH ;
Trethewey, RN ;
Lange, BM ;
Wurtele, ES ;
Sumner, LW .
TRENDS IN PLANT SCIENCE, 2004, 9 (09) :418-425
[6]   A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis [J].
Brand, Lukas ;
Hoerler, Mirjam ;
Nueesch, Eveline ;
Vassalli, Sara ;
Barrell, Philippa ;
Yang, Wei ;
Jefferson, Richard A. ;
Grossniklaus, Ueli ;
Curtis, Mark D. .
PLANT PHYSIOLOGY, 2006, 141 (04) :1194-1204
[7]   The CesA gene family of barley. Quantitative analysis of transcripts reveals two groups of co-expressed genes [J].
Burton, RA ;
Shirley, NJ ;
King, BJ ;
Harvey, AJ ;
Fincher, GB .
PLANT PHYSIOLOGY, 2004, 134 (01) :224-236
[8]   Unintended effects and their detection in genetically modified crops [J].
Cellini, F ;
Chesson, A ;
Colquhoun, I ;
Constable, A ;
Davies, HV ;
Engel, KH ;
Gatehouse, AMR ;
Kärenlampi, S ;
Kok, EJ ;
Leguay, JJ ;
Lehesranta, S ;
Noteborn, HPJM ;
Pedersen, J ;
Smith, M .
FOOD AND CHEMICAL TOXICOLOGY, 2004, 42 (07) :1089-1125
[9]   A gateway cloning vector set for high-throughput functional analysis of genes in planta [J].
Curtis, MD ;
Grossniklaus, U .
PLANT PHYSIOLOGY, 2003, 133 (02) :462-469
[10]   A novel superfamily of transporters for allantoin and other oxo derivatives of nitrogen heterocyclic compounds in Arabidopsis [J].
Desimone, M ;
Catoni, E ;
Ludewig, U ;
Hilpert, M ;
Schneider, A ;
Kunze, R ;
Tegeder, M ;
Frommer, WB ;
Schumacher, K .
PLANT CELL, 2002, 14 (04) :847-856