Quartz tuning fork based microwave impedance microscopy

被引:38
作者
Cui, Yong-Tao [1 ]
Ma, Eric Yue [1 ,2 ]
Shen, Zhi-Xun [1 ,2 ]
机构
[1] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
关键词
RESISTANCE; SENSOR;
D O I
10.1063/1.4954156
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Microwave impedance microscopy (MIM), a near-field microwave scanning probe technique, has become a powerful tool to characterize local electrical responses in solid state samples. We present the design of a new type of MIM sensor based on quartz tuning fork and electrochemically etched thin metal wires. Due to a higher aspect ratio tip and integration with tuning fork, such design achieves comparable MIM performance and enables easy self-sensing topography feedback in situations where the conventional optical feedback mechanism is not available, thus is complementary to microfabricated shielded stripline-type probes. The new design also enables stable differential mode MIM detection and multiple-frequency MIM measurements with a single sensor. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 21 条
[1]   Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor [J].
Edwards, H ;
Taylor, L ;
Duncan, W ;
Melmed, AJ .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (03) :980-984
[2]   High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork [J].
Giessibl, FJ .
APPLIED PHYSICS LETTERS, 1998, 73 (26) :3956-3958
[3]   Calibrated nanoscale capacitance measurements using a scanning microwave microscope [J].
Huber, H. P. ;
Moertelmaier, M. ;
Wallis, T. M. ;
Chiang, C. J. ;
Hochleitner, M. ;
Imtiaz, A. ;
Oh, Y. J. ;
Schilcher, K. ;
Dieudonne, M. ;
Smoliner, J. ;
Hinterdorfer, P. ;
Rosner, S. J. ;
Tanbakuchi, H. ;
Kabos, P. ;
Kienberger, F. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (11)
[4]   Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement [J].
Karbassi, A. ;
Ruf, D. ;
Bettermann, A. D. ;
Paulson, C. A. ;
van der Weide, Daniel W. ;
Tanbakuchi, H. ;
Stancliff, R. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (09)
[5]   Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope [J].
Kundhikanjana, W. ;
Yang, Y. ;
Tanga, Q. ;
Zhang, K. ;
Lai, K. ;
Ma, Y. ;
Kelly, M. A. ;
Li, X. X. ;
Shen, Z-X .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2013, 28 (02)
[6]   Tapping mode microwave impedance microscopy [J].
Lai, K. ;
Kundhikanjana, W. ;
Peng, H. ;
Cui, Y. ;
Kelly, M. A. ;
Shen, Z. X. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (04)
[7]   Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes [J].
Lai, K. ;
Ji, M. B. ;
Leindecker, N. ;
Kelly, M. A. ;
Shen, Z. X. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (06)
[8]   Calibration of shielded microwave probes using bulk dielectrics [J].
Lai, K. ;
Kundhikanjana, W. ;
Kelly, M. A. ;
Shen, Z. X. .
APPLIED PHYSICS LETTERS, 2008, 93 (12)
[9]   Nanoscale microwave microscopy using shielded cantilever probes [J].
Lai K. ;
Kundhikanjana W. ;
Kelly M.A. ;
Shen Z.-X. .
Applied Nanoscience, 2011, 1 (1) :13-18
[10]   Imaging of Coulomb-Driven Quantum Hall Edge States [J].
Lai, Keji ;
Kundhikanjana, Worasom ;
Kelly, Michael A. ;
Shen, Zhi-Xun ;
Shabani, Javad ;
Shayegan, Mansour .
PHYSICAL REVIEW LETTERS, 2011, 107 (17)