Discovery of Patterns in Spatio-Temporal Data Using Clustering Techniques

被引:0
作者
Aryal, Amar Mani [1 ]
Wang, Sujing [1 ]
机构
[1] Lamar Univ, Dept Comp Sci, Beaumont, TX 77710 USA
来源
2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017) | 2017年
关键词
clustering; spatial-temporal clustering; spatial-temporal patterns; shared nearest neighbor clustering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial-temporal clustering is very useful unsupervised learning technique and can be used to identify interesting distribution patterns from geo-Iocated data. It is one of the most commonly used data mining techniques in many application domains, e.g. geographic information science, health science, and environmental science. In this paper, we propose a density-based spatial-temporal clustering algorithm for geo-Iocated data points, based on an extension of the SNN (Shared Nearest Neighbor) clustering. The proposed algorithm allows the integration of location, time and other semantic attributes in the clustering process. This algorithm can find clusters of different sizes, shapes, and densities in noisy data. We evaluate the effectiveness of our algorithm through a case study involving a New York City taxi cab pickup data and Maryland crime data. The experimental results show that the proposed algorithm can discover interesting patterns and useful information from spatial-temporal data.
引用
收藏
页码:990 / 995
页数:6
相关论文
共 50 条
[31]   Enhanced spatio-temporal clustering in the detection of neonatal seizures using context-based rules [J].
Mitra, J ;
Glover, JR ;
Ktonas, PY ;
Frost, JD ;
Hrachovyz, RA ;
Mizrahi, EM .
PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 :4717-4720
[32]   Spatio-temporal dynamic clustering modeling for solar irradiance resource assessment [J].
Maldonado-Salguero, Patricia ;
Carmen Bueso-Sanchez, Maria ;
Molina-Garcia, Angel ;
Miguel Sanchez-Lozano, Juan .
RENEWABLE ENERGY, 2022, 200 :344-359
[33]   TASK SEGMENTATION IN A MOBILE ROBOT BY MNSOM AND CLUSTERING WITH SPATIO-TEMPORAL CONTIGUITY [J].
Muslim, Muhammad Aziz ;
Ishikawa, Masumi ;
Furukawa, Tetsuo .
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2009, 5 (04) :865-875
[34]   Identifying Propagating Signals with Spatio-Temporal Clustering in Multivariate Time Series [J].
Huewel, Jan David ;
Schlake, Georg Stefan ;
Albrechts, Kevin ;
Beecks, Christian .
SIMILARITY SEARCH AND APPLICATIONS, SISAP 2024, 2025, 15268 :207-214
[35]   CorClustST-Correlation-based clustering of big spatio-temporal datasets [J].
Huesch, Marc ;
Schyska, Bruno U. ;
von Bremen, Lueder .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 110 :610-619
[36]   Spatio-Temporal Analysis of Large Air Pollution Data [J].
Bin Tarek, Mirza Farhan ;
Asaduzzaman, Md ;
Patwary, Mohammad .
2018 10TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2018, :221-224
[37]   Data Reduction in Very Large Spatio-Temporal Datasets [J].
Whelan, Michael ;
Nhien An Le Khac ;
Kechadi, M-Tahar .
19TH IEEE INTERNATIONAL WORKSHOPS ON ENABLING TECHNOLOGIES: INFRASTRUCTURE FOR COLLABORATIVE ENTERPRISES (WETICE 2010), 2010, :104-109
[38]   Meteor tracking via local pattern clustering in spatio-temporal domain [J].
Kukal, Jaromir ;
Klimt, Martin ;
Svihlik, Jan ;
Fliegel, Karel .
APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXIX, 2016, 9971
[39]   TweeProfiles3: visualization of spatio-temporal patterns on Twitter [J].
Maia, Andre ;
Cunha, Tiago ;
Soares, Carlos ;
Abreu, Pedro Henriques .
NEW ADVANCES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 1, 2016, 444 :869-878
[40]   Uncovering migration systems through spatio-temporal tensor co-clustering [J].
Almquist, Zack W. ;
Nguyen, Tri Duc ;
Sorensen, Mikael ;
Fu, Xiao ;
Sidiropoulos, Nicholas D. .
SCIENTIFIC REPORTS, 2024, 14 (01)