Discovery of Patterns in Spatio-Temporal Data Using Clustering Techniques

被引:0
作者
Aryal, Amar Mani [1 ]
Wang, Sujing [1 ]
机构
[1] Lamar Univ, Dept Comp Sci, Beaumont, TX 77710 USA
来源
2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017) | 2017年
关键词
clustering; spatial-temporal clustering; spatial-temporal patterns; shared nearest neighbor clustering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial-temporal clustering is very useful unsupervised learning technique and can be used to identify interesting distribution patterns from geo-Iocated data. It is one of the most commonly used data mining techniques in many application domains, e.g. geographic information science, health science, and environmental science. In this paper, we propose a density-based spatial-temporal clustering algorithm for geo-Iocated data points, based on an extension of the SNN (Shared Nearest Neighbor) clustering. The proposed algorithm allows the integration of location, time and other semantic attributes in the clustering process. This algorithm can find clusters of different sizes, shapes, and densities in noisy data. We evaluate the effectiveness of our algorithm through a case study involving a New York City taxi cab pickup data and Maryland crime data. The experimental results show that the proposed algorithm can discover interesting patterns and useful information from spatial-temporal data.
引用
收藏
页码:990 / 995
页数:6
相关论文
共 50 条
[21]   Spatio-temporal Saliency for Microscopic Medical Data [J].
Javid, Rakhshanda ;
Riaz, M. Mohsin ;
Ghafoor, Abdul ;
Iqbal, Naveed .
2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION IN INDUSTRY (ICRAI), 2019,
[22]   RT-DBSCAN: Real-Time Parallel Clustering of Spatio-Temporal Data Using Spark-Streaming [J].
Gong, Yikai ;
Sinnott, Richard O. ;
Rimba, Paul .
COMPUTATIONAL SCIENCE - ICCS 2018, PT I, 2018, 10860 :524-539
[23]   Development and validation of OPTICS based spatio-temporal clustering technique [J].
Agrawal, K. P. ;
Garg, Sanjay ;
Sharma, Shashikant ;
Patel, Pinkal .
INFORMATION SCIENCES, 2016, 369 :388-401
[24]   Modeling spatio-temporal wildfire ignition point patterns [J].
Hering, Amanda S. ;
Bell, Cynthia L. ;
Genton, Marc G. .
ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2009, 16 (02) :225-250
[25]   "Serial" versus "Parallel": A Comparison of Spatio-Temporal Clustering Approaches [J].
Zhang, Yongli ;
Wang, Sujing ;
Aryal, Amar Mani ;
Eick, Christoph F. .
FOUNDATIONS OF INTELLIGENT SYSTEMS, ISMIS 2017, 2017, 10352 :396-403
[26]   Spatio-Temporal Patterns of Dengue Fever in Cali, Colombia [J].
Delmelle, Eric ;
Casas, Irene ;
Rojas, Jorge H. ;
Varela, Alejandro .
INTERNATIONAL JOURNAL OF APPLIED GEOSPATIAL RESEARCH, 2013, 4 (04) :58-75
[27]   Modeling spatio-temporal wildfire ignition point patterns [J].
Amanda S. Hering ;
Cynthia L. Bell ;
Marc G. Genton .
Environmental and Ecological Statistics, 2009, 16 :225-250
[28]   Spatio-Temporal Clustering of Time-Dependent Origin-Destination Electronic Trace Data [J].
van Leeuwen, Daphne ;
Bosman, Joost ;
Dugundji, Elenna .
9TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2018) / THE 8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2018) / AFFILIATED WORKSHOPS, 2018, 130 :359-367
[29]   Introducing 'presence' and 'stationarity index' to study partial migration patterns: an application of a spatio-temporal clustering technique [J].
Damiani, Maria Luisa ;
Issa, Hamza ;
Fotino, Giuseppe ;
Heurich, Marco ;
Cagnacci, Francesca .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2016, 30 (05) :907-928
[30]   Recognizing Spatio-Temporal Traffic Patterns at Intersections Using Self-Organizing Maps [J].
Brunauer, Richard ;
Schmitzberger, Nina ;
Rehrl, Karl .
PROCEEDINGS OF THE 11TH ACM SIGSPATIAL INTERNATIONAL WORKSHOP ON COMPUTATIONAL TRANSPORTATION SCIENCE (IWCTS 2018), 2018, :43-52