Discovery of Patterns in Spatio-Temporal Data Using Clustering Techniques

被引:0
|
作者
Aryal, Amar Mani [1 ]
Wang, Sujing [1 ]
机构
[1] Lamar Univ, Dept Comp Sci, Beaumont, TX 77710 USA
来源
2017 2ND INTERNATIONAL CONFERENCE ON IMAGE, VISION AND COMPUTING (ICIVC 2017) | 2017年
关键词
clustering; spatial-temporal clustering; spatial-temporal patterns; shared nearest neighbor clustering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spatial-temporal clustering is very useful unsupervised learning technique and can be used to identify interesting distribution patterns from geo-Iocated data. It is one of the most commonly used data mining techniques in many application domains, e.g. geographic information science, health science, and environmental science. In this paper, we propose a density-based spatial-temporal clustering algorithm for geo-Iocated data points, based on an extension of the SNN (Shared Nearest Neighbor) clustering. The proposed algorithm allows the integration of location, time and other semantic attributes in the clustering process. This algorithm can find clusters of different sizes, shapes, and densities in noisy data. We evaluate the effectiveness of our algorithm through a case study involving a New York City taxi cab pickup data and Maryland crime data. The experimental results show that the proposed algorithm can discover interesting patterns and useful information from spatial-temporal data.
引用
收藏
页码:990 / 995
页数:6
相关论文
共 50 条
  • [1] Finding spatio-temporal patterns in climate data using clustering
    Sap, MNM
    Awan, AM
    2005 INTERNATIONAL CONFERENCE ON CYBERWORLDS, PROCEEDINGS, 2005, : 155 - 162
  • [2] Spatio-Temporal Sensor Graphs (STSG): A data model for the discovery of spatio-temporal patterns
    George, Betsy
    Kang, James M.
    Shekhar, Shashi
    INTELLIGENT DATA ANALYSIS, 2009, 13 (03) : 457 - 475
  • [3] Functional distributional clustering using spatio-temporal data
    Venkatasubramaniam, A.
    Evers, L.
    Thakuriah, P.
    Ampountolas, K.
    JOURNAL OF APPLIED STATISTICS, 2023, 50 (04) : 909 - 926
  • [4] Administrative Regions Discovery Based on Human Mobility Patterns and Spatio-Temporal Clustering
    Nunez-del-Prado-Cortez, Miguel
    Alatrista-Salas, Hugo
    PROCEEDINGS 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SENSOR SYSTEMS (MASS 2016), 2016, : 65 - 74
  • [5] Spatio-Temporal Analysis of Greenhouse Gas Data Via Clustering Techniques
    Cuzzocrea, Alfredo
    Gaber, Mohamed Medhat
    Lattimer, Staci
    PROCEEDINGS OF THE 2015 IEEE 19TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2015, : 478 - 483
  • [6] Clustering Dynamic Spatio-Temporal Patterns in the Presence of Noise and Missing Data
    Chen, Xi C.
    Faghmous, James H.
    Khandelwal, Ankush
    Kumar, Vipin
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 2575 - 2581
  • [7] Local Clustering in Spatio-Temporal Point Patterns
    Mateu, Jorge
    Rodriguez-Cortes, Francisco J.
    MATHEMATICS OF PLANET EARTH, 2014, : 171 - 174
  • [8] Discovery of closed spatio-temporal sequential patterns from event data
    Maciag, Piotr S.
    Kryszkiewicz, Marzena
    Bembenik, Robert
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 707 - 716
  • [9] Spatio-Temporal Data Clustering using Deep Learning: A Review
    Aparna, R.
    Idicula, Sumam Mary
    2022 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (IEEE EAIS 2022), 2022,
  • [10] Spatio-Temporal Clustering of Road Network Data
    Cheng, Tao
    Anbaroglu, Berk
    ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, PT I, 2010, 6319 : 116 - 123