An explainable XGBoost-based approach towards assessing the risk of cardiovascular disease in patients with Type 2 Diabetes Mellitus

被引:36
作者
Athanasiou, Maria [1 ]
Sfrintzeri, Konstantina [1 ]
Zarkogianni, Konstantia [1 ]
Thanopoulou, Anastasia C. [2 ]
Nikita, Konstantina S. [1 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens, Greece
[2] Univ Athens, Med Sch, Athens, Greece
来源
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020) | 2020年
关键词
Cardiovascular Disease; Diabetes; machine learning; explainability; interpretability; unbalanced data; SCORE; FRAMINGHAM; PREDICTION; EQUATIONS;
D O I
10.1109/BIBE50027.2020.00146
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiovascular Disease ( CVD) is an important cause of disability and death among individuals with Diabetes Mellitus (DM). International clinical guidelines for the management of Type 2 DM (T2DM) are founded on primary and secondary prevention and favor the evaluation of CVD-related risk factors towards appropriate treatment initiation. CVD risk prediction models can provide valuable tools for optimizing the frequency of medical visits and performing timely preventive and therapeutic interventions against CVD events. The integration of explainability modalities in these models can enhance human understanding on the reasoning process, maximize transparency and embellish trust towards the models' adoption in clinical practice. The aim of the present study is to develop and evaluate an explainable personalized risk prediction model for the fatal or non-fatal CVD incidence in T2DM individuals. An explainable approach based on the eXtreme Gradient Boosting (XGBoost) and the Tree SHAP (SHapley Additive exPlanations) method is deployed for the calculation of the 5-year CVD risk and the generation of individual explanations on the model's decisions. Data from the 5- year follow up of 560 patients with T2DM are used for development and evaluation purposes. The obtained results (AUC=71.13%) indicate the potential of the proposed approach to handle the unbalanced nature of the used dataset, while providing clinically meaningful insights about the model's decision process.
引用
收藏
页码:859 / 864
页数:6
相关论文
共 24 条
[1]   CARDIOVASCULAR-DISEASE RISK PROFILES [J].
ANDERSON, KM ;
ODELL, PM ;
WILSON, PWF ;
KANNEL, WB .
AMERICAN HEART JOURNAL, 1991, 121 (01) :293-298
[2]  
[Anonymous], 2016, Diabetes and cardiovascular disease
[3]  
[Anonymous], 2019, IEEE ACM T COMPUT BI
[4]  
Antila K., 2019, HIGH QUALITY PHENOTY
[5]   Prediction of the risk of cardiovascular mortality using a score that includes glucose as a risk factor.: The DECODE Study [J].
Balkau, B ;
Hu, G ;
Qiao, Q ;
Tuomilehto, J ;
Borch-Johnsen, K ;
Pyörälä, K .
DIABETOLOGIA, 2004, 47 (12) :2118-2128
[6]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[7]   Framingham, SCORE, and DECODE risk equations do not provide reliable cardiovascular risk estimates in type 2 diabetes [J].
Coleman, Ruth L. ;
Stevens, Richard J. ;
Retnakaran, Ravi ;
Holman, Rury R. .
DIABETES CARE, 2007, 30 (05) :1292-1294
[8]   Estimation of ten-year risk of fatal cardiovascular disease in Europe:: the SCORE project [J].
Conroy, RM ;
Pyörälä, K ;
Fitzgerald, AP ;
Sans, S ;
Menotti, A ;
De Backer, G ;
De Bacquer, D ;
Ducimetière, P ;
Jousilahti, P ;
Keil, U ;
Njolstad, I ;
Oganov, RG ;
Thomsen, T ;
Tunstall-Pedoe, H ;
Tverdal, A ;
Wedel, H ;
Whincup, P ;
Wilhelmsen, L ;
Graham, IM .
EUROPEAN HEART JOURNAL, 2003, 24 (11) :987-1003
[9]   2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD [J].
Cosentino, Francesco ;
Grant, Peter J. ;
Aboyans, Victor ;
Bailey, Clifford J. ;
Ceriello, Antonio ;
Delgado, Victoria ;
Federici, Massimo ;
Filippatos, Gerasimos ;
Grobbee, Diederick E. ;
Hansen, Tina Birgitte ;
Huikuri, Heikki, V ;
Johansson, Isabelle ;
Juni, Peter ;
Lettino, Maddalena ;
Marx, Nikolaus ;
Mellbin, Linda G. ;
Ostgren, Carl J. ;
Rocca, Bianca ;
Roffi, Marco ;
Sattar, Naveed ;
Seferovic, Petar M. ;
Sousa-Uva, Miguel ;
Valensi, Paul ;
Wheeler, David C. ;
Piepoli, Massimo Francesco ;
Birkeland, Kare, I ;
Adamopoulos, Stamatis ;
Ajjan, Ramzi ;
Avogaro, Angelo ;
Baigent, Colin ;
Brodmann, Marianne ;
Bueno, Hector ;
Ceconi, Claudio ;
Chioncel, Ovidiu ;
Coats, Andrew ;
Collet, Jean-Philippe ;
Collins, Peter ;
Cosyns, Bernard ;
Di Mario, Carlo ;
Fisher, Miles ;
Fitzsimons, Donna ;
Halvorsen, Sigrun ;
Hansen, Dominique ;
Hoes, Arno ;
Holt, Richard I. G. ;
Home, Philip ;
Katus, Hugo A. ;
Khunti, Kamlesh ;
Komajda, Michel ;
Lambrinou, Ekaterini .
EUROPEAN HEART JOURNAL, 2020, 41 (02) :255-323
[10]   Comparative assessment of statistical and machine learning techniques towards estimating the risk of developing type 2 diabetes and cardiovascular complications [J].
Dalakleidi, Kalliopi ;
Zarkogianni, Konstantia ;
Thanopoulou, Anastasia ;
Nikita, Konstantina .
EXPERT SYSTEMS, 2017, 34 (06)