Fano Interference Between Higher Localized and Propagating Surface Plasmon Modes in Nanovoid Arrays

被引:27
|
作者
Chen, Shu [1 ]
Meng, Lingyan [1 ]
Hu, Jiawen [2 ]
Yang, Zhilin [1 ]
机构
[1] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
[2] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Hunan, Peoples R China
基金
美国国家科学基金会;
关键词
Fano resonance; Propagating plasmon polaritons; Localized surface plasmon resonance; Surface-enhanced Raman scattering; Surface plasmon sensor; Finite-difference time-domain; RESONANCE;
D O I
10.1007/s11468-014-9779-z
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Surface plasmon resonance-based optical properties for gold nanovoid arrays were analyzed using three-dimensional finite-difference time-domain method, revealing that two asymmetric Fano resonances, with extremely low reflectivity and narrow line width, are caused by the strong interference between localized quadrupolar and hexadecapolar modes and propagating surface plasmon mode. The two Fano resonances produce significant electromagnetic field enhancement, resulting in 7 orders of magnitude surface-enhanced Raman scattering (SERS) enhancement, with about 100 times more than that produced by single propagating surface plasmon polaritons (SPPs) or localized surface plasmon resonance (LSPR) mode, including dipolar mode. Their narrow line width and giant field strength also allow highly sensitive sensing of refractive index; the sensitivities and figure of merits for such Fano resonance-based sensor are predicted to be 789 and 642 nm/RIU, 39 and 31, respectively. These plasmonic characteristics, thus, would enable the nanovoid arrays for using in wide practical applications including surface-enhanced spectroscopy and surface plasmon sensor.
引用
收藏
页码:71 / 76
页数:6
相关论文
共 50 条
  • [21] Manipulation of plasmon dephasing time via the coupling between localized surface plasmon resonance and waveguide modes
    Sun, Baixun
    Lang, Peng
    Xu, Yang
    Wang, Lun
    Ji, Boyu
    Song, Xiaowei
    Lin, Jingquan
    OPTICS COMMUNICATIONS, 2024, 561
  • [22] Universal sensitivity of propagating surface plasmon resonance in nanostructure arrays
    Jia, Peipei
    Yang, Jun
    OPTICS EXPRESS, 2015, 23 (14): : 18658 - 18664
  • [23] Optical waveguide biosensor based on modal interference between surface plasmon modes
    Kumar, Manoj
    Kumar, Arun
    Tripathi, Saurabh Mani
    SENSORS AND ACTUATORS B-CHEMICAL, 2015, 211 : 456 - 461
  • [24] Selective excitation of surface plasmon modes propagating in Ag nanowires
    Song, Mingxia
    Dellinger, Jean
    Demichel, Olivier
    Buret, Mickael
    des Francs, Gerard Colas
    Zhang, Douguo
    Dujardin, Erik
    Bouhelier, Alexandre
    OPTICS EXPRESS, 2017, 25 (08): : 9138 - 9149
  • [25] Tunable Localized Hybrid Plasmon Modes and Fano Resonances in Au Core-Semishell
    Tengfei Wu
    Shaobo Yang
    Wenbin Tan
    Xingfei Li
    Plasmonics, 2016, 11 : 1351 - 1359
  • [26] Coupling of a surface plasmon with localized subwavelength microcavity modes
    Jouy, P.
    Todorov, Y.
    Vasanelli, A.
    Colombelli, R.
    Sagnes, I.
    Sirtori, C.
    APPLIED PHYSICS LETTERS, 2011, 98 (02)
  • [27] Tunable Localized Hybrid Plasmon Modes and Fano Resonances in Au Core-Semishell
    Wu, Tengfei
    Yang, Shaobo
    Tan, Wenbin
    Li, Xingfei
    PLASMONICS, 2016, 11 (05) : 1351 - 1359
  • [28] Controlling the interaction between localized and delocalized surface plasmon modes: Experiment and numerical calculations
    Christ, A.
    Zentgraf, T.
    Tikhodeev, S. G.
    Gippius, N. A.
    Kuhl, J.
    Giessen, H.
    PHYSICAL REVIEW B, 2006, 74 (15)
  • [29] Interaction between localized and delocalized surface plasmon polariton modes in a metallic photonic crystal
    Christ, A.
    Zentgraf, T.
    Tikhodeev, S. G.
    Gippius, N. A.
    Martin, O. J. F.
    Kuhl, J.
    Giessen, H.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2006, 243 (10): : 2344 - 2348
  • [30] Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes
    Hayashi, S.
    Nesterenko, D. V.
    Rahmouni, A.
    Sekkat, Z.
    APPLIED PHYSICS LETTERS, 2016, 108 (05)