Operando Gas Monitoring of Solid Electrolyte Interphase Reactions on Lithium

被引:53
|
作者
Hobold, Gustavo M. [1 ]
Khurram, Aliza [1 ]
Gallant, Betar M. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
ALKYL CARBONATE; FLUOROETHYLENE CARBONATE; ETHYLENE CARBONATE; SURFACE-CHEMISTRY; REACTION-PRODUCT; ION BATTERIES; LI; METAL; DECOMPOSITION; ANODES;
D O I
10.1021/acs.chemmater.9b04550
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Formation of stable solid electrolyte interphases (SEI) that protect Li against continuous electrolyte reduction is one of the remaining challenges to enable safe, secondary high-energy Li batteries with minimal capacity loss. However, SEI formation pathways remain difficult to experimentally pinpoint, even with the most well-known carbonate electrolytes and graphite anodes, and especially on Li. Using a custom electrochemical cell coupled to a gas chromatograph (GC), dynamic gas-phase signatures of interphase reactions during a first Li plating step in EC/DMC were monitored as a function of cell chemistry and operational parameters. The operando nature of these experiments allows distinction to be drawn between gases formed chemically by the reaction of metallic Li and electrolyte, vs those evolved electrochemically, i.e., through electron-transfer and reaction with Li+. Quantification of gas evolution molar ratios during cycling enables determination of specific interphase reactions and their branching ratios dominating active SEI formation. We find that SEI-repair mechanisms are sensitive to the choice of the electrolyte salt (LiPF6/LiClO4/LiTFSI), solvent fluorination, and current density. In particular, SEIs resulting from solvent decarbonylation and/or decarboxylation-leading to enhanced CO and/or CO2 evolution-are the most stable, providing a simple and descriptive gas-phase signature indicative of high Coulombic efficiencies of Li plating/stripping.
引用
收藏
页码:2341 / 2352
页数:12
相关论文
共 50 条
  • [21] Structural Properties of Solid Electrolyte Interphase on Lithium Metal
    Jeong, Soon-Ki
    Choi, Hye-Kang
    Kim, Yang Soo
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (11) : 8803 - 8807
  • [22] Diethyl phenylphosphonite contributing to solid electrolyte interphase and cathode electrolyte interphase for lithium metal batteries
    Miao, Chunxia
    Qi, Shihan
    Liang, Kang
    Qi, Yanli
    Huang, Junda
    Wu, Mingguang
    Zhao, Hongshun
    Liu, Jiandong
    Ren, Yurong
    Ma, Jianmin
    JOURNAL OF ENERGY CHEMISTRY, 2021, 63 : 566 - 573
  • [23] Unveiling the Role of Li+ Solvation Structures with Commercial Carbonates in the Formation of Solid Electrolyte Interphase for Lithium Metal Batteries
    He, Jian
    Wang, Huaping
    Zhou, Qing
    Qi, Shihan
    Wu, Mingguang
    Li, Fang
    Hu, Wei
    Ma, Jianmin
    SMALL METHODS, 2021, 5 (08)
  • [24] Tailoring the Lithium Solid Electrolyte Interphase for Highly Concentrated Electrolytes with Direct Exposure to Halogenated Solvents
    Thornburg, Eric S.
    Haasch, Richard T.
    Gewirth, Andrew A.
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (03) : 2768 - 2779
  • [25] Buildup of the Solid Electrolyte Interphase on Lithium-Metal Anodes: Reactive Molecular Dynamics Study
    Bertolini, Samuel
    Balbuena, Perla B.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (20) : 10783 - 10791
  • [26] The effect of local lithium surface chemistry and topography on solid electrolyte interphase composition and dendrite nucleation
    Meyerson, Melissa L.
    Sheavly, Jonathan K.
    Dolocan, Andrei
    Griffin, Monroe P.
    Pandit, Anish H.
    Rodriguez, Rodrigo
    Stephens, Ryan M.
    Vanden Bout, David A.
    Heller, Adam
    Mullins, C. Buddie
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (24) : 14882 - 14894
  • [27] Liquid electrolyte chemistries for solid electrolyte interphase construction on silicon and lithium-metal anodes
    Park, Sewon
    Kim, Saehun
    Lee, Jeong-A.
    Ue, Makoto
    Choi, Nam-Soon
    CHEMICAL SCIENCE, 2023, 14 (37) : 9996 - 10024
  • [28] High lithium oxide prevalence in the lithium solid-electrolyte interphase for high Coulombic efficiency
    Hobold, Gustavo M.
    Wang, Chongzhen
    Steinberg, Katherine
    Li, Yuzhang
    Gallant, Betar M.
    NATURE ENERGY, 2024, 9 (05) : 580 - 591
  • [29] Nanoscale characterization of the solid electrolyte interphase and lithium growth by atomic force microscopy
    He, Zixu
    Li, Wanxia
    Chen, Yawei
    Huang, Fanyang
    Jie, Yulin
    Li, Xinpeng
    Cao, Ruiguo
    Jiao, Shuhong
    BATTERY ENERGY, 2024, 3 (03):
  • [30] Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries
    Benitez, Laura
    Seminario, Jorge M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (11) : E3159 - E3170