Operando Gas Monitoring of Solid Electrolyte Interphase Reactions on Lithium

被引:53
|
作者
Hobold, Gustavo M. [1 ]
Khurram, Aliza [1 ]
Gallant, Betar M. [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
关键词
ALKYL CARBONATE; FLUOROETHYLENE CARBONATE; ETHYLENE CARBONATE; SURFACE-CHEMISTRY; REACTION-PRODUCT; ION BATTERIES; LI; METAL; DECOMPOSITION; ANODES;
D O I
10.1021/acs.chemmater.9b04550
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Formation of stable solid electrolyte interphases (SEI) that protect Li against continuous electrolyte reduction is one of the remaining challenges to enable safe, secondary high-energy Li batteries with minimal capacity loss. However, SEI formation pathways remain difficult to experimentally pinpoint, even with the most well-known carbonate electrolytes and graphite anodes, and especially on Li. Using a custom electrochemical cell coupled to a gas chromatograph (GC), dynamic gas-phase signatures of interphase reactions during a first Li plating step in EC/DMC were monitored as a function of cell chemistry and operational parameters. The operando nature of these experiments allows distinction to be drawn between gases formed chemically by the reaction of metallic Li and electrolyte, vs those evolved electrochemically, i.e., through electron-transfer and reaction with Li+. Quantification of gas evolution molar ratios during cycling enables determination of specific interphase reactions and their branching ratios dominating active SEI formation. We find that SEI-repair mechanisms are sensitive to the choice of the electrolyte salt (LiPF6/LiClO4/LiTFSI), solvent fluorination, and current density. In particular, SEIs resulting from solvent decarbonylation and/or decarboxylation-leading to enhanced CO and/or CO2 evolution-are the most stable, providing a simple and descriptive gas-phase signature indicative of high Coulombic efficiencies of Li plating/stripping.
引用
收藏
页码:2341 / 2352
页数:12
相关论文
共 50 条
  • [1] Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
    Nie, Mengyun
    Chalasani, Dinesh
    Abraham, Daniel P.
    Chen, Yanjing
    Bose, Arijit
    Lucht, Brett L.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (03) : 1257 - 1267
  • [2] Solid electrolyte interphase formation on metallic lithium
    Lewandowski, Andrzej
    Swiderska-Mocek, Agnieszka
    Waliszewski, Lukasz
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (10) : 3391 - 3397
  • [3] Recent Progress in Understanding Solid Electrolyte Interphase on Lithium Metal Anodes
    Wu, Haiping
    Jia, Hao
    Wang, Chongmin
    Zhang, Ji-Guang
    Xu, Wu
    ADVANCED ENERGY MATERIALS, 2021, 11 (05)
  • [4] Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries
    Heiskanen, Satu Kristiina
    Kim, Jongjung
    Lucht, Brett L.
    JOULE, 2019, 3 (10) : 2322 - 2333
  • [5] Research Progress of Solid Electrolyte Interphase in Lithium Batteries
    Yang, Yi
    Yan, Chong
    Huang, Jiaqi
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [6] Interactions Between Solid Electrolyte Interphase and Lithium Dendrite
    Wang, Yunxiang
    Hao, Feng
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (04)
  • [7] In Situ and Operando Investigations of Failure Mechanisms of the Solid Electrolyte Interphase on Silicon Electrodes
    Kumar, Ravi
    Tokranov, Anton
    Sheldon, Brian W.
    Xiao, Xingcheng
    Huang, Zhuangqun
    Li, Chunzeng
    Mueller, Thomas
    ACS ENERGY LETTERS, 2016, 1 (04): : 689 - 697
  • [8] Impact of Chemical Follow-up Reactions for Lithium Ion Electrolytes: Generation of Nucleophilic Species, Solid Electrolyte Interphase, and Gas Formation
    Burkhardt, Stephen E.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : A684 - A690
  • [9] Solid Electrolyte Interphase on Lithium Metal Anodes
    Shen, Zhichuan
    Huang, Junqiao
    Xie, Yu
    Wei, Dafeng
    Chen, Jinbiao
    Shi, Zhicong
    CHEMSUSCHEM, 2024, 17 (11)
  • [10] Toward Unraveling the Origin of Lithium Fluoride in the Solid Electrolyte Interphase
    Cao, Chuntian
    Pollard, Travis P.
    Borodin, Oleg
    Mars, Julian E.
    Tsao, Yuchi
    Lukatskaya, Maria R.
    Kasse, Robert M.
    Schroeder, Marshall A.
    Xu, Kang
    Toney, Michael F.
    Steinrueck, Hans-Georg
    CHEMISTRY OF MATERIALS, 2021, 33 (18) : 7315 - 7336