Optimal Gaussian Kernel Parameter Selection for SVM Classifier

被引:1
|
作者
Yang, Xu [1 ]
Xiong, HuiLin [1 ]
Yang, Xin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
kernel optimization; model selection; kernel parameter selection; support vector machines; pattern recognition; FEATURE SPACE; CRITERION; MATRIX;
D O I
10.1587/transinf.E93.D.3352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of the kernel based learning algorithms such as SVM depends heavily on the proper choice of the kernel parameter It is desirable for the kernel machines to work on the optimal kernel parameter that adapts well to the input data and the learning tasks In this paper we present a novel method for selecting Gaussian kernel parameter by maximizing a class separability criterion which measures the data distribution in the kernel induced feature space and is invariant under any non singular linear transformation The experimental results show that both the class separability of the data in the kernel induced feature space and the classification performance of the SVM classifier are improved by using the optimal kernel parameter
引用
收藏
页码:3352 / 3358
页数:7
相关论文
共 50 条
  • [41] Building An SVM Classifier for Automated Selection of Big Data
    Ding, Junhua
    Wang, Jiabin
    Kang, Xiaojun
    Hu, Xin-Hua
    2017 IEEE 6TH INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS 2017), 2017, : 15 - 22
  • [42] A Feature Selection Based Serial SVM Ensemble Classifier
    Cao, Jianjun
    Lv, Guojun
    Chang, Chen
    Li, Hongmei
    IEEE ACCESS, 2019, 7 : 144516 - 144523
  • [43] OPTIMAL PARAMETER SELECTION
    AHMED, NU
    GEORGANAS, ND
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1973, AC18 (03) : 313 - 314
  • [44] The anisotropic Gaussian kernel for SVM classification of HRCT images of the lung
    Shamsheyeva, A
    Sowmya, A
    PROCEEDINGS OF THE 2004 INTELLIGENT SENSORS, SENSOR NETWORKS & INFORMATION PROCESSING CONFERENCE, 2004, : 439 - 444
  • [45] Scaling Gaussian RBF kernel width to improve SVM classification
    Chang, Q
    Chen, QC
    Wang, XL
    PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS AND BRAIN, VOLS 1-3, 2005, : 19 - 22
  • [46] Automatic parameter selection for polynomial kernel
    Ali, S
    Smith, KA
    PROCEEDINGS OF THE 2003 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION, 2003, : 243 - 249
  • [47] The Design of Diabetic Retinopathy Classifier Based on Parameter Optimization SVM
    Han, Jiangxue
    Jiang, Wenping
    Dai, Cuixia
    Ma, Hongyan
    2018 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2018, : 52 - 58
  • [48] Alternatives to parameter selection for Kernel methods
    Munoz, Alberto
    Martin de Diego, Isaac
    Moguerza, Javier M.
    ARTIFICIAL NEURAL NETWORKS - ICANN 2006, PT 1, 2006, 4131 : 216 - 225
  • [49] Kernel estimate and bandwidth parameter selection
    College of Science, Shenyang University, Shenyang 110044, China
    Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban), 2006, 3 (478-480):
  • [50] A Practical Method Based on Bayes Boundary-Ness for Optimal Classifier Parameter Status Selection
    David Ha
    Yuya Tomotoshi
    Masahiro Senda
    Hideyuki Watanabe
    Shigeru Katagiri
    Miho Ohsaki
    Journal of Signal Processing Systems, 2020, 92 : 135 - 151