Optimal Gaussian Kernel Parameter Selection for SVM Classifier

被引:1
|
作者
Yang, Xu [1 ]
Xiong, HuiLin [1 ]
Yang, Xin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
kernel optimization; model selection; kernel parameter selection; support vector machines; pattern recognition; FEATURE SPACE; CRITERION; MATRIX;
D O I
10.1587/transinf.E93.D.3352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of the kernel based learning algorithms such as SVM depends heavily on the proper choice of the kernel parameter It is desirable for the kernel machines to work on the optimal kernel parameter that adapts well to the input data and the learning tasks In this paper we present a novel method for selecting Gaussian kernel parameter by maximizing a class separability criterion which measures the data distribution in the kernel induced feature space and is invariant under any non singular linear transformation The experimental results show that both the class separability of the data in the kernel induced feature space and the classification performance of the SVM classifier are improved by using the optimal kernel parameter
引用
收藏
页码:3352 / 3358
页数:7
相关论文
共 50 条
  • [31] Feature Selection Methods for an Improved SVM Classifier
    Morariu, Daniel
    Vintan, Lucian N.
    Tresp, Volker
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 14, 2006, 14 : 83 - +
  • [32] An Analytical Approach to Fast Parameter Selection of Gaussian RBF Kernel for Support Vector Machine
    Liu, Zhiliang
    Zuo, Ming J.
    Zhao, Xiaomin
    Xu, Hongbing
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (02) : 691 - 710
  • [33] A Simple Gaussian Kernel Classifier with Automated Hyperparameter Tuning
    Fukumori, Kosuke
    Tanaka, Toshihisa
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 1358 - 1363
  • [34] Weighted Feature Gaussian Kernel SVM for Emotion Recognition
    Wei, Wei
    Jia, Qingxuan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016
  • [35] Credit risk evaluation using a weighted least squares SVM classifier with design of experiment for parameter selection
    Yu, Lean
    Yao, Xiao
    Wang, Shouyang
    Lai, K. K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 15392 - 15399
  • [36] Active Testing for SVM Parameter Selection
    Miranda, Pericles B. C.
    Prudencio, Ricardo B. C.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [37] Parameter selection method for SVM with PSO
    Peng Xiyuan
    Wu Hongxing
    Peng Yu
    CHINESE JOURNAL OF ELECTRONICS, 2006, 15 (04): : 638 - 642
  • [38] Kernel Functions of SVM: A Comparison and Optimal Solution
    Panja, Subham
    Chatterjee, Akshay
    Yasmin, Ghazaala
    ADVANCED INFORMATICS FOR COMPUTING RESEARCH, ICAICR 2018, PT I, 2019, 955 : 88 - 97
  • [39] Parameter Optimization of Polynomial Kernel SVM from miniCV
    Yeh, Li-Chia
    Lu, Chung-Chin
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE, 2019, 11943 : 496 - 507
  • [40] Generalization of Parameter Selection of SVM and LS-SVM for Regression
    Zeng, Jiye
    Tan, Zheng-Hong
    Matsunaga, Tsuneo
    Shirai, Tomoko
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2019, 1 (02): : 745 - 755