Optimal Gaussian Kernel Parameter Selection for SVM Classifier

被引:1
|
作者
Yang, Xu [1 ]
Xiong, HuiLin [1 ]
Yang, Xin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
kernel optimization; model selection; kernel parameter selection; support vector machines; pattern recognition; FEATURE SPACE; CRITERION; MATRIX;
D O I
10.1587/transinf.E93.D.3352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of the kernel based learning algorithms such as SVM depends heavily on the proper choice of the kernel parameter It is desirable for the kernel machines to work on the optimal kernel parameter that adapts well to the input data and the learning tasks In this paper we present a novel method for selecting Gaussian kernel parameter by maximizing a class separability criterion which measures the data distribution in the kernel induced feature space and is invariant under any non singular linear transformation The experimental results show that both the class separability of the data in the kernel induced feature space and the classification performance of the SVM classifier are improved by using the optimal kernel parameter
引用
收藏
页码:3352 / 3358
页数:7
相关论文
共 50 条
  • [21] Nonlinear feature selection using Gaussian kernel SVM-RFE for fault diagnosis
    Xue, Yangtao
    Zhang, Li
    Wang, Bangjun
    Zhang, Zhao
    Li, Fanzhang
    APPLIED INTELLIGENCE, 2018, 48 (10) : 3306 - 3331
  • [22] Adaptive Differential Evolution Based Feature Selection and Parameter Optimization for Advised SVM Classifier
    Masood, Ammara
    Al-Jumaily, Adel
    NEURAL INFORMATION PROCESSING, PT I, 2015, 9489 : 401 - 410
  • [23] An ensemble svm classifier with feature selection
    Hu, Han
    En-en, Ren
    2007 INTERNATIONAL SYMPOSIUM ON COMPUTER SCIENCE & TECHNOLOGY, PROCEEDINGS, 2007, : 6 - 8
  • [24] Optimal SVM parameter selection for non-separable and unbalanced datasets
    Jiang, Peng
    Missoum, Samy
    Chen, Zhao
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 50 (04) : 523 - 535
  • [25] Optimal SVM parameter selection for non-separable and unbalanced datasets
    Peng Jiang
    Samy Missoum
    Zhao Chen
    Structural and Multidisciplinary Optimization, 2014, 50 : 523 - 535
  • [26] Polynomial kernel adaptation and extensions to the SVM classifier learning
    Saad, Ramy
    Halgamuge, Saman K.
    Li, Jason
    NEURAL COMPUTING & APPLICATIONS, 2008, 17 (01): : 19 - 25
  • [27] Polynomial kernel adaptation and extensions to the SVM classifier learning
    Ramy Saad
    Saman K. Halgamuge
    Jason Li
    Neural Computing and Applications, 2008, 17 : 19 - 25
  • [28] An asymptotically optimal kernel combined classifier
    Mojirsheibani, Majid
    Kong, Jiajie
    STATISTICS & PROBABILITY LETTERS, 2016, 119 : 91 - 100
  • [29] Feature Selection for an SVM Based Webpage Classifier
    Mtetwa, Nhamo
    Yousefi, Mehdi
    Reddy, Viseshini
    2017 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE (ISCMI), 2017, : 85 - 88
  • [30] An analytical approach to fast parameter selection of gaussian RBF kernel for support vector machine
    School of Mechanical, Electronic, and Industrial Engineering, Singapore
    不详
    不详
    J. Inf. Sci. Eng., 2 (691-710):