Optimal Gaussian Kernel Parameter Selection for SVM Classifier

被引:1
|
作者
Yang, Xu [1 ]
Xiong, HuiLin [1 ]
Yang, Xin [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
kernel optimization; model selection; kernel parameter selection; support vector machines; pattern recognition; FEATURE SPACE; CRITERION; MATRIX;
D O I
10.1587/transinf.E93.D.3352
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The performance of the kernel based learning algorithms such as SVM depends heavily on the proper choice of the kernel parameter It is desirable for the kernel machines to work on the optimal kernel parameter that adapts well to the input data and the learning tasks In this paper we present a novel method for selecting Gaussian kernel parameter by maximizing a class separability criterion which measures the data distribution in the kernel induced feature space and is invariant under any non singular linear transformation The experimental results show that both the class separability of the data in the kernel induced feature space and the classification performance of the SVM classifier are improved by using the optimal kernel parameter
引用
收藏
页码:3352 / 3358
页数:7
相关论文
共 50 条
  • [1] Parameter Selection of Gaussian Kernel for One-Class SVM
    Xiao, Yingchao
    Wang, Huangang
    Xu, Wenli
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (05) : 927 - 939
  • [2] Selection of Gaussian Kernel Parameter for SVM Based on Convex Estimation
    Men, Changqian
    Wang, Weqjian
    ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT I, PROCEEDINGS, 2008, 5263 : 709 - 714
  • [3] Parameter selection of Gaussian kernel SVM based on local density of training set
    Yang, Jiawei
    Wu, Zeping
    Peng, Ke
    Okolo, Patrick N.
    Zhang, Weihua
    Zhao, Hailong
    Sun, Jingbo
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2021, 29 (04) : 536 - 548
  • [4] Parameter selection in SVM with RBF kernel function
    Han Shunjie
    Cao Qubo
    Han Meng
    2012 WORLD AUTOMATION CONGRESS (WAC), 2012,
  • [5] Super-parameter selection for Gaussian-Kernel SVM based on outlier-resisting
    Wang, Xuesong
    Huang, Fei
    Cheng, Yuhu
    MEASUREMENT, 2014, 58 : 147 - 153
  • [6] Variant of Gaussian kernel and parameter setting method for nonlinear SVM
    Zhou, Shui-Sheng
    Liu, Hong-Wei
    Ye, Feng
    NEUROCOMPUTING, 2009, 72 (13-15) : 2931 - 2937
  • [7] RBF kernel parameter selection for SVM based on PSO
    Wu, HX
    Peng, XY
    Peng, Y
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 1603 - 1606
  • [8] Efficient Selection of Gaussian Kernel SVM Parameters for Imbalanced Data
    Tsai, Chen-An
    Chang, Yu-Jing
    GENES, 2023, 14 (03)
  • [9] An Estimation of the Optimal Gaussian Kernel Parameter for Support Vector Classification
    Wang, Wenjian
    Ma, Liang
    ADVANCES IN NEURAL NETWORKS - ISNN 2008, PT I, PROCEEDINGS, 2008, 5263 : 627 - 635
  • [10] SVM parameter selection algorithm based on maximum kernel similarity diversity
    Tang, Yao-Hua
    Guo, Wei-Min
    Gao, Jing-Huai
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2010, 23 (02): : 210 - 215