Fine-grained Stop-Move Detection in UWB-based Trajectories

被引:6
作者
Hachem, Fatima [1 ]
Vecchia, Davide [2 ]
Damiani, Maria Luisa [1 ]
Picco, Gian Pietro [2 ]
机构
[1] Univ Milan, Milan, Italy
[2] Univ Trento, Trento, Italy
来源
2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM) | 2022年
关键词
Ultra-wideband; mobility pattern; trajectory; ALGORITHM;
D O I
10.1109/PerCom53586.2022.9762404
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ultra-wideband (UWB) localization enables user tracking with high spatio-temporal resolution, whose exploitation for detecting higher-level mobility patterns is largely unexplored. We study whether i) existing detection techniques, developed for coarser-grained localization, apply also to UWB trajectories, and ii) the quantitative extent to which this enables finer-grained analyses. We focus on the well-known stop-move pattern, and offer a concrete use case of capturing visits in a real museum. We contribute a novel metric suited to the high UWB spatio-temporal resolution and use it to evaluate representative techniques. We deploy a UWB system in a 25 x15 m(2) museum area and base our analysis on 70000+ positions and 200+ ground-truth stops. These are very close in space and time, yet results confirm very accurate spatio-temporal estimation in the vast majority of cases.
引用
收藏
页码:111 / 118
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 2016, NVIVO QUAL DAT AN SO
[2]   A probabilistic stop and move classifier for noisy GPS trajectories [J].
Bermingham, Luke ;
Lee, Ickjai .
DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (06) :1634-1662
[3]   THE INTERACTING MULTIPLE MODEL ALGORITHM FOR SYSTEMS WITH MARKOVIAN SWITCHING COEFFICIENTS [J].
BLOM, HAP ;
BARSHALOM, Y .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1988, 33 (08) :780-783
[4]   Segmenting trajectories: A framework and algorithms using spatiotemporal criteria [J].
Buchin, Maike ;
Driemel, Anne ;
van Kreveld, Marc ;
Sacristan, Vera .
JOURNAL OF SPATIAL INFORMATION SCIENCE, 2011, (03) :33-63
[5]  
Centorrino P., 2021, J COMPUTATIONAL SCI
[6]   Cluster-based trajectory segmentation with local noise [J].
Damiani, Maria Luisa ;
Hachem, Fatima ;
Issa, Hamza ;
Ranc, Nathan ;
Moorcroft, Paul ;
Cagnacci, Francesca .
DATA MINING AND KNOWLEDGE DISCOVERY, 2018, 32 (04) :1017-1055
[7]  
Di Franco C, 2017, PROC IPSN
[8]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[9]   A foundation for representing and querying moving objects [J].
Güting, RH ;
Böhlen, MH ;
Erwig, M ;
Jensen, CS ;
Lorentzos, NA ;
Schneider, M ;
Vazirgiannis, M .
ACM TRANSACTIONS ON DATABASE SYSTEMS, 2000, 25 (01) :1-42
[10]   Segmenting human trajectory data by movement states while addressing signal loss and signal noise [J].
Hwang, Sungsoon ;
VanDeMark, Cynthia ;
Dhatt, Navdeep ;
Yalla, Sai V. ;
Crews, Ryan T. .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2018, 32 (07) :1391-1412