Medical Image Synthesis with Deep Convolutional Adversarial Networks

被引:453
作者
Nie, Dong [1 ,2 ,3 ]
Trullo, Roger [2 ,3 ,4 ]
Lian, Jun [5 ]
Wang, Li [2 ,3 ]
Petitjean, Caroline [4 ]
Ruan, Su [4 ]
Wang, Qian [6 ]
Shen, Dinggang [2 ,3 ,7 ]
机构
[1] Univ N Carolina, Dept Comp Sci, Chapel Hill, NC 27510 USA
[2] Univ N Carolina, Dept Radiol, Chapel Hill, NC 27510 USA
[3] Univ N Carolina, BRIC, Chapel Hill, NC 27510 USA
[4] Univ Normandy, Dept Comp Sci, Caen, France
[5] Univ N Carolina, Dept Radiat Oncol, Chapel Hill, NC USA
[6] Shanghai Jiao Tong Univ, Sch Biomed Engn, MedX Res Inst, Shanghai 200240, Peoples R China
[7] Korea Univ, Dept Brain & Cognit Engn, Seoul 02841, South Korea
基金
中国国家自然科学基金; 美国国家卫生研究院;
关键词
Adversarial learning; auto-context model; deep learning; image synthesis; residual learning; ESTIMATING CT IMAGE; ATTENUATION-CORRECTION; 7T-LIKE IMAGES; NEURAL-NETWORK; AUTO-CONTEXT; SUPERRESOLUTION; RECONSTRUCTION; PET/MRI; ATLAS;
D O I
10.1109/TBME.2018.2814538
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and radiation dose, the acquisition of certain image modalities may be limited. Thus, medical image synthesis can be of great benefit by estimating a desired imaging modality without incurring an actual scan. In this paper, we propose a generative adversarial approach to address this challenging problem. Specifically, we train a fully convolutional network (FCN) to generate a target image given a source image. To better model a nonlinear mapping from source to target and to produce more realistic target images, we propose to use the adversarial learning strategy to better model the FCN. Moreover, the FCN is designed to incorporate an image-gradient-difference-based loss function to avoid generating blurry target images. Long-term residual unit is also explored to help the training of the network. We further apply Auto-Context Model to implement a context-aware deep convolutional adversarial network. Experimental results show that our method is accurate and robust for synthesizing target images from the corresponding source images. In particular, we evaluate our method on three datasets, to address the tasks of generating CT from MRI and generating 7T MRI from 3T MRI images. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks.
引用
收藏
页码:2720 / 2730
页数:11
相关论文
共 52 条
[1]  
Alexander DC, 2014, LECT NOTES COMPUT SC, V8675, P225, DOI 10.1007/978-3-319-10443-0_29
[2]   Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain [J].
Avants, B. B. ;
Epstein, C. L. ;
Grossman, M. ;
Gee, J. C. .
MEDICAL IMAGE ANALYSIS, 2008, 12 (01) :26-41
[3]   Convolutional Neural Network for Reconstruction of 7T-like Images from 3T MRI Using Appearance and Anatomical Features [J].
Bahrami, Khosro ;
Shi, Feng ;
Rekik, Islem ;
Shen, Dinggang .
DEEP LEARNING AND DATA LABELING FOR MEDICAL APPLICATIONS, 2016, 10008 :39-47
[4]   Reconstruction of 7T-Like Images From 3T MRI [J].
Bahrami, Khosro ;
Shi, Feng ;
Zong, Xiaopeng ;
Shin, Hae Won ;
An, Hongyu ;
Shen, Dinggang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) :2085-2097
[5]   Hierarchical Reconstruction of 7T-like Images from 3T MRI Using Multi-level CCA and Group Sparsity [J].
Bahrami, Khosro ;
Shi, Feng ;
Zong, Xiaopeng ;
Shin, Hae Won ;
An, Hongyu ;
Shen, Dinggang .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2015, PT II, 2015, 9350 :659-666
[6]   Clinical fMRI: Evidence for a 7 T benefit over 3 T [J].
Beisteiner, R. ;
Robinson, S. ;
Wurnig, M. ;
Hilbert, M. ;
Merksa, K. ;
Rath, J. ;
Hoellinger, I. ;
Klinger, N. ;
Marosi, Ch ;
Trattnig, S. ;
Geissler, A. .
NEUROIMAGE, 2011, 57 (03) :1015-1021
[7]   MRI-Based Attenuation Correction for Hybrid PET/MRI Systems: A 4-Class Tissue Segmentation Technique Using a Combined Ultrashort-Echo-Time/Dixon MRI Sequence [J].
Berker, Yannick ;
Franke, Jochen ;
Salomon, Andre ;
Palmowski, Moritz ;
Donker, Henk C. W. ;
Temur, Yavuz ;
Mottaghy, Felix M. ;
Kuhl, Christiane ;
Izquierdo-Garcia, David ;
Fayad, Zahi A. ;
Kiessling, Fabian ;
Schulz, Volkmar .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (05) :796-804
[8]   Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies [J].
Burgos, Ninon ;
Cardoso, M. Jorge ;
Thielemans, Kris ;
Modat, Marc ;
Pedemonte, Stefano ;
Dickson, John ;
Barnes, Anna ;
Ahmed, Rebekah ;
Mahoney, Colin J. ;
Schott, Jonathan M. ;
Duncan, John S. ;
Atkinson, David ;
Arridge, Simon R. ;
Hutton, Brian F. ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) :2332-2341
[9]   Toward Implementing an MRI-Based PET Attenuation-Correction Method for Neurologic Studies on the MR-PET Brain Prototype [J].
Catana, Ciprian ;
van der Kouwe, Andre ;
Benner, Thomas ;
Michel, Christian J. ;
Hamm, Michael ;
Fenchel, Matthias ;
Fischl, Bruce ;
Rosen, Bruce ;
Schmand, Matthias ;
Sorensen, A. Gregory .
JOURNAL OF NUCLEAR MEDICINE, 2010, 51 (09) :1431-1438
[10]   Collaborative patch-based super-resolution for diffusion-weighted images [J].
Coupe, Pierrick ;
Manjon, Jose V. ;
Chamberland, Maxime ;
Descoteaux, Maxine ;
Hiba, Bassem .
NEUROIMAGE, 2013, 83 :245-261