The honeycomb model of GLn(C) tensor products II:: Puzzles determine facets of the Littlewood-Richardson cone

被引:141
作者
Knutson, A [1 ]
Tao, T
Woodward, C
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
D O I
10.1090/S0894-0347-03-00441-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:19 / 48
页数:30
相关论文
共 15 条
[1]   Local systems on P1-S for S a finite set [J].
Belkale, P .
COMPOSITIO MATHEMATICA, 2001, 129 (01) :67-86
[2]  
DERKSEN H, LITTLEWOODRICHARDSON
[3]  
DERKSEN H, STABLE DECOMPOSITION
[4]   Eigenvalues, invariant factors, highest weights, and Schubert calculus [J].
Fulton, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 37 (03) :209-249
[5]  
Fulton W., 1997, LONDON MATH SOC STUD, V35
[6]  
Gleizer O, 2000, INT MATH RES NOTICES, V2000, P741
[7]   EIGENVALUE INEQUALITIES AND SCHUBERT CALCULUS [J].
HELMKE, U ;
ROSENTHAL, J .
MATHEMATISCHE NACHRICHTEN, 1995, 171 :207-225
[8]   EIGENVALUES OF SUMS OF HERMITIAN MATRICES [J].
HORN, A .
PACIFIC JOURNAL OF MATHEMATICS, 1962, 12 (01) :225-&
[9]  
KLYACHKO AA, 1994, STABLE VECTOR BUNDLE
[10]   The honeycomb model of GLn(C) tensor products I:: Proof of the saturation conjecture [J].
Knutson, A ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :1055-1090