On Trapped Modes in Variable White Dwarfs as Probes of the 12C(α, γ)16O Reaction Rate

被引:14
作者
Chidester, Morgan T. [1 ,2 ]
Farag, Ebraheem [1 ,2 ]
Timmes, F. X. [1 ,2 ]
机构
[1] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85287 USA
[2] Ctr Evolut Elements, Joint Inst Nucl Astrophys, Tempe, AZ 85287 USA
关键词
ADIABATIC PROPERTIES; MASS GAP; STARS; ASTEROSEISMOLOGY; EVOLUTION; C-12(ALPHA; GAMMA)O-16; EFFICIENCY; ORIGIN; BRANCH; QUEST;
D O I
10.3847/1538-4357/ac7ec3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We seek signatures of the current experimental C-12 (alpha, gamma)O-16 reaction rate probability distribution function in the pulsation periods of carbon-oxygen white dwarf (WD) models. We find that adiabatic g-modes trapped by the interior carbon-rich layer offer potentially useful signatures of this reaction rate probability distribution function. Probing the carbon-rich region is relevant because it forms during the evolution of low-mass stars under radiative helium-burning conditions, mitigating the impact of convective mixing processes. We make direct quantitative connections between the pulsation periods of the identified trapped g-modes in variable WD models and the current experimental C-12 (alpha, gamma)O-16 reaction rate probability distribution function. We find an average spread in relative period shifts of Delta P / P similar or equal to +/- 2% for the identified trapped g-modes over the +/- 3 sigma uncertainty in the C-12 (alpha, gamma)O-16 reaction rate probability distribution function-across the effective temperature range of observed DAV and DBV WDs and for different WD masses, helium shell masses, and hydrogen shell masses. The g-mode pulsation periods of observed WDs are typically ,given to six to seven significant figures of precision. This suggests that an astrophysical constraint on the C-12 (alpha, gamma)O-16 reaction rate could, in principle, be extractable from the period spectrum of observed variable WDs.
引用
收藏
页数:10
相关论文
共 68 条
[1]   Advanced LIGO [J].
Aasi, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. ;
Abernathy, M. R. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. ;
Affeldt, C. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Ain, A. ;
Ajith, P. ;
Alemic, A. ;
Allen, B. ;
Amariutei, D. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. ;
Areeda, J. S. ;
Ashton, G. ;
Ast, S. ;
Aston, S. M. ;
Aufmuth, P. ;
Aulbert, C. ;
Aylott, B. E. ;
Babak, S. ;
Baker, P. T. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barbet, M. ;
Barclay, S. ;
Barish, B. C. ;
Barker, D. ;
Barr, B. ;
Barsotti, L. ;
Bartlett, J. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Batch, J. C. ;
Baune, C. ;
Behnke, B. ;
Bell, A. S. ;
Bell, C. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
[2]   Advanced Virgo: a second-generation interferometric gravitational wave detector [J].
Acernese, F. ;
Agathos, M. ;
Agatsuma, K. ;
Aisa, D. ;
Allemandou, N. ;
Allocca, A. ;
Amarni, J. ;
Astone, P. ;
Balestri, G. ;
Ballardin, G. ;
Barone, F. ;
Baronick, J-P ;
Barsuglia, M. ;
Basti, A. ;
Basti, F. ;
Bauer, Th S. ;
Bavigadda, V. ;
Bejger, M. ;
Beker, M. G. ;
Belczynski, C. ;
Bersanetti, D. ;
Bertolini, A. ;
Bitossi, M. ;
Bizouard, M. A. ;
Bloemen, S. ;
Blom, M. ;
Boer, M. ;
Bogaert, G. ;
Bondi, D. ;
Bondu, F. ;
Bonelli, L. ;
Bonnand, R. ;
Boschi, V. ;
Bosi, L. ;
Bouedo, T. ;
Bradaschia, C. ;
Branchesi, M. ;
Briant, T. ;
Brillet, A. ;
Brisson, V. ;
Bulik, T. ;
Bulten, H. J. ;
Buskulic, D. ;
Buy, C. ;
Cagnoli, G. ;
Calloni, E. ;
Campeggi, C. ;
Canuel, B. ;
Carbognani, F. ;
Cavalier, F. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
[3]   Overview of KAGRA: Calibration, detector characterization, physical environmental monitors, and the geophysics interferometer [J].
Akutsu, T. ;
Ando, M. ;
Arai, K. ;
Arai, Y. ;
Araki, S. ;
Araya, A. ;
Aritomi, N. ;
Asada, H. ;
Aso, Y. ;
Bae, S. ;
Baiotti, L. ;
Bajpai, R. ;
Barton, M. A. ;
Cannon, K. ;
Cao, Z. ;
Capocasa, E. ;
Chan, M. ;
Chen, C. ;
Chen, K. ;
Chen, Y. ;
Chiang, C-Y ;
Chu, H. ;
Chu, Y-K ;
Eguchi, S. ;
Enomoto, Y. ;
Flaminio, R. ;
Fujii, Y. ;
Fujikawa, Y. ;
Fukunaga, M. ;
Fukushima, M. ;
Gao, D. ;
Ge, G. ;
Ha, S. ;
Hagiwara, A. ;
Haino, S. ;
Han, W-B ;
Hasegawa, K. ;
Hattori, K. ;
Hayakawa, H. ;
Hayama, K. ;
Himemoto, Y. ;
Hiranuma, Y. ;
Hirata, N. ;
Hirose, E. ;
Hong, Z. ;
Hsieh, B. ;
Huang, G-Z ;
Huang, H-Y ;
Huang, P. ;
Huang, Y-C .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021, 2021 (05)
[4]  
Arnett D., 1996, Supernovae and Nucleosynthesis: An Investigation of the History of Matter from the Big Bang to the Present
[5]   FUNDAMENTAL PARAMETERS OF MAIN-SEQUENCE STARS IN AN INSTANT WITH MACHINE LEARNING [J].
Bellinger, Earl P. ;
Angelou, George C. ;
Hekker, Saskia ;
Basu, Sarbani ;
Ball, Warrick H. ;
Guggenberger, Elisabeth .
ASTROPHYSICAL JOURNAL, 2016, 830 (01)
[6]   SEVEN-PERIOD ASTEROSEISMIC FIT OF THE KEPLER DBV [J].
Bischoff-Kim, Agnes ;
Ostensen, Roy H. ;
Hermes, J. J. ;
Provencal, Judith L. .
ASTROPHYSICAL JOURNAL, 2014, 794 (01)
[7]   ADIABATIC PROPERTIES OF PULSATING DA WHITE-DWARFS .4. AN EXTENSIVE SURVEY OF THE PERIOD STRUCTURE OF EVOLUTIONARY MODELS [J].
BRASSARD, P ;
FONTAINE, G ;
WESEMAEL, F ;
TASSOUL, M .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1992, 81 (02) :747-794
[8]   ADIABATIC PROPERTIES OF PULSATING DA WHITE-DWARFS .1. THE TREATMENT OF THE BRUNT-VAISALA FREQUENCY AND THE REGION OF PERIOD FORMATION [J].
BRASSARD, P ;
FONTAINE, G ;
WESEMAEL, F ;
KAWALER, SD ;
TASSOUL, M .
ASTROPHYSICAL JOURNAL, 1991, 367 (02) :601-611
[9]   ADIABATIC PROPERTIES OF PULSATING DA WHITE-DWARFS .2. MODE TRAPPING IN COMPOSITIONALLY STRATIFIED MODELS [J].
BRASSARD, P ;
FONTAINE, G ;
WESEMAEL, F ;
HANSEN, CJ .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 1992, 80 (01) :369-401
[10]   THE RED GIANT CLOCK AS AN INDICATOR FOR THE EFFICIENCY OF CENTRAL MIXING IN HORIZONTAL-BRANCH STARS [J].
CAPUTO, F ;
CASTELLANI, V ;
CHIEFFI, A ;
PULONE, L ;
TORNAMBE, A .
ASTROPHYSICAL JOURNAL, 1989, 340 (01) :241-248