Strengthening Causal Inference in Exposomics Research: Application of Genetic Data and Methods

被引:10
作者
Avery, Christy L. [1 ,5 ]
Howard, Annie Green [2 ,5 ]
Ballou, Anna F. [1 ]
Buchanan, Victoria L. [1 ]
Collins, Jason M. [1 ]
Downie, Carolina G. [1 ]
Engel, Stephanie M. [1 ]
Graff, Mariaelisa [1 ]
Highland, Heather M. [1 ]
Lee, Moa P. [1 ]
Lilly, Adam G. [5 ,6 ]
Lu, Kun [4 ]
Rager, Julia E. [4 ]
Staley, Brooke S. [1 ]
North, Kari E. [1 ]
Gordon-Larsen, Penny [3 ,5 ]
机构
[1] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Epidemiol, Chapel Hill, NC 27515 USA
[2] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Biostat, Chapel Hill, NC 27515 USA
[3] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Nutr, Chapel Hill, NC 27515 USA
[4] Univ N Carolina, Gillings Sch Global Publ Hlth, Dept Environm Sci & Engn, Chapel Hill, NC 27515 USA
[5] Univ N Carolina, Carolina Populat Ctr, Chapel Hill, NC 27515 USA
[6] Univ N Carolina, Dept Sociol, Chapel Hill, NC 27515 USA
关键词
GENOME-WIDE ASSOCIATION; HERITABILITY; CHALLENGES; DESIGN; HEALTH; RISK;
D O I
10.1289/EHP9098
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Advances in technologies to measure a broad set of exposures have led to a range of exposome research efforts. Yet, these efforts have insufficiently integrated methods that incorporate genetic data to strengthen causal inference, despite evidence that many exposome-associated phenotypes are heritable. OBJECTIVE: We demonstrate how integration of methods and study designs that incorporate genetic data can strengthen causal inference in exposomics research by helping address six challenges: reverse causation and unmeasured confounding, comprehensive examination of phenotypic effects, low efficiency, replication, multilevel data integration, and characterization of tissue-specific effects. Examples are drawn from studies of biomarkers and health behaviors, exposure domains where the causal inference methods we describe are most often applied. DISCUSSION: Technological, computational, and statistical advances in genotyping, imputation, and analysis, combined with broad data sharing and cross-study collaborations, offer multiple opportunities to strengthen causal inference in exposomics research. Full application of these opportunities will require an expanded understanding of genetic variants that predict exposome phenotypes as well as an appreciation that the utility of genetic variants for causal inference will vary by exposure and may depend on large sample sizes. However, several of these challenges can be addressed through international scientific collaborations that prioritize data sharing. Ultimately, we anticipate that efforts to better integrate methods that incorporate genetic data will extend the reach of exposomics research by helping address the challenges of comprehensively measuring the exposome and its health effects across studies, the life course, and in varied contexts and diverse populations.
引用
收藏
页数:9
相关论文
共 133 条
[31]   The Importance of the Biological Impact of Exposure to the Concept of the Exposome [J].
Dennis, Kristine K. ;
Auerbach, Scott S. ;
Balshaw, David M. ;
Cui, Yuxia ;
Fallin, Margaret Daniele ;
Smith, MartynT. ;
Spira, Avrum ;
Sumner, Susan ;
Miller, Gary W. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2016, 124 (10) :1504-1510
[32]   Semiparametric variance-component models for linkage and association analyses of censored trait data [J].
Diao, G. ;
Lin, D. Y. .
GENETIC EPIDEMIOLOGY, 2006, 30 (07) :570-581
[33]   Mendelian randomization as an instrumental variable approach to causal inference [J].
Didelez, Vanessa ;
Sheehan, Nuala .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (04) :309-330
[34]   A comprehensive assessment of environmental exposures among 1000 North American patients with primary sclerosing cholangitis, with and without inflammatory bowel disease [J].
Eaton, J. E. ;
Juran, B. D. ;
Atkinson, E. J. ;
Schlicht, E. M. ;
Xie, X. ;
de Andrade, M. ;
Lammert, C. S. ;
Luketic, V. A. ;
Odin, J. A. ;
Koteish, A. A. ;
Kowdley, K. V. ;
Chopra, K. B. ;
Hirschfield, G. M. ;
Chalasani, N. P. ;
Lazaridis, K. N. .
ALIMENTARY PHARMACOLOGY & THERAPEUTICS, 2015, 41 (10) :980-990
[35]   A tobit variance-component method for linkage analysis of censored trait data [J].
Epstein, MP ;
Lin, XH ;
Boehnke, M .
AMERICAN JOURNAL OF HUMAN GENETICS, 2003, 72 (03) :611-620
[36]   Genome-wide association study identifies loci affecting blood copper, selenium and zinc [J].
Evans, David M. ;
Zhu, Gu ;
Dy, Veronica ;
Heath, Andrew C. ;
Madden, Pamela A. F. ;
Kemp, John P. ;
McMahon, George ;
St Pourcain, Beate ;
Timpson, Nicholas J. ;
Golding, Jean ;
Lawlor, Debbie A. ;
Steer, Colin ;
Montgomery, Grant W. ;
Martin, Nicholas G. ;
Smith, George Davey ;
Whitfield, John B. .
HUMAN MOLECULAR GENETICS, 2013, 22 (19) :3998-4006
[37]   A Genome-wide Association Study Discovers 46 Loci of the Human Metabolome in the Hispanic Community Health Study/Study of Latinos [J].
Feofanova, Elena, V ;
Chen, Han ;
Dai, Yulin ;
Jia, Peilin ;
Grove, Megan L. ;
Morrison, Alanna C. ;
Qi, Qibin ;
Daviglus, Martha ;
Cai, Jianwen ;
North, Kari E. ;
Laurie, Cathy C. ;
Kaplan, Robert C. ;
Boerwinkle, Eric ;
Yu, Bing .
AMERICAN JOURNAL OF HUMAN GENETICS, 2020, 107 (05) :849-863
[38]   minimac2: faster genotype imputation [J].
Fuchsberger, Christian ;
Abecasis, Goncalo R. ;
Hinds, David A. .
BIOINFORMATICS, 2015, 31 (05) :782-784
[39]   Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric traits [J].
Gamazon, Eric R. ;
Zwinderman, Aeilko H. ;
Cox, Nancy J. ;
Denys, Damiaan ;
Derks, Eske M. .
NATURE GENETICS, 2019, 51 (06) :933-+
[40]   A gene-based association method for mapping traits using reference transcriptome data [J].
Gamazon, Eric R. ;
Wheeler, Heather E. ;
Shah, Kaanan P. ;
Mozaffari, Sahar V. ;
Aquino-Michaels, Keston ;
Carroll, Robert J. ;
Eyler, Anne E. ;
Denny, Joshua C. ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Im, Hae Kyung .
NATURE GENETICS, 2015, 47 (09) :1091-+