Hydrogen storage capacity of Li-decorated borophene and pristine graphene slit pores: A combined ab initio and quantum-thermodynamic study

被引:23
作者
Cabria, I [1 ]
Lebon, A. [2 ]
Torres, M. B. [3 ]
Gallego, L. J. [4 ]
Vega, A. [1 ]
机构
[1] Univ Valladolid, Dept Fis Teor Atom & Opt, ES-47011 Valladolid, Spain
[2] Univ Brest, Lab Chim Electrochim Mol & Chim Analyt, UMR CNRS 6521, F-29285 Brest, France
[3] Univ Burgos, Dept Matemat & Comp, Escuela Politecn Super, ES-09006 Burgos, Spain
[4] Univ Santiago de Compostela, Fac Fis, Dept Fis Mat Condensada, ES-15782 Santiago De Compostela, Spain
关键词
Hydrogen storage; 2D materials; Boron-based materials; Li-decorated materials; Statistical physics; ADSORPTION; NANOSTRUCTURES; SIZE;
D O I
10.1016/j.apsusc.2021.150019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Among the two-dimensional materials of the post-graphene era, borophene has raised an enormous interest due to its unprecedented diversity of structures and the wide variety of potential applications, including its ability for hydrogen storage. In the present paper we use van der Waals-corrected density functional theory in conjunction with a quantum-thermodynamic model to investigate the hydrogen storage capacity of confining Li-decorated borophene sheets in its most stable Pmmn8 configuration. Our theoretical approach surpasses the standard density functional theory calculations only valid at zero temperature and no pressure, thus providing the gravimetric and volumetric capacities as well as the isotherms in real conditions. We show that narrow Lidecorated slit pores of borophene have a good volumetric hydrogen storage capacity particularly at low temperature. Accordingly, nanoporous boron frameworks could be optimal for hydrogen storage in applications at low temperature. We compare the results with those corresponding to pristine graphene slit pores.
引用
收藏
页数:10
相关论文
共 51 条
  • [1] Ahn C, 2013, HYDROGEN STORAGE TECHNOLOGY: MATERIALS AND APPLICATIONS, P213
  • [2] An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage
    Allendorf, Mark D.
    Hulvey, Zeric
    Gennett, Thomas
    Ahmed, Alauddin
    Autrey, Tom
    Camp, Jeffrey
    Cho, Eun Seon
    Furukawa, Hiroyasu
    Haranczyk, Maciej
    Head-Gordon, Martin
    Jeong, Sohee
    Karkamkar, Abhi
    Liu, Di-Jia
    Long, Jeffrey R.
    Meihaus, Katie R.
    Nayyar, Iffat H.
    Nazarov, Roman
    Siegel, Donald J.
    Stavila, Vitalie
    Urban, Jeffrey J.
    Veccham, Srimukh Prasad
    Wood, Brandon C.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (10) : 2784 - 2812
  • [3] Density functional study of adsorption of molecular hydrogen on graphene layers
    Arellano, JS
    Molina, LM
    Rubio, A
    Alonso, JA
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2000, 112 (18) : 8114 - 8119
  • [4] Optimum conditions for adsorptive storage
    Bhatia, SK
    Myers, AL
    [J]. LANGMUIR, 2006, 22 (04) : 1688 - 1700
  • [5] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [6] Concepts for improving hydrogen storage in nanoporous materials
    Broom, D. P.
    Webb, C. J.
    Fanourgakis, G. S.
    Froudakis, G. E.
    Trikalitis, P. N.
    Hirscher, M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (15) : 7768 - 7779
  • [7] Broom DP, 2011, GREEN ENERGY TECHNOL, P61, DOI 10.1007/978-0-85729-221-6_3
  • [8] Simulations of volumetric hydrogen storage capacities of nanoporous carbons: Effect of dispersion interactions as a function of pressure, temperature and pore width
    Cabria, I
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (09) : 5697 - 5709
  • [9] Searching for DFT-based methods that include dispersion interactions to calculate the physisorption of H2 on benzene and graphene
    Cabria, I.
    Lopez, M. J.
    Alonso, J. A.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (21)
  • [10] Simulation of the hydrogen storage in nanoporous carbons with different pore shapes
    Cabria, I.
    Lopez, M. J.
    Alonso, J. A.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) : 10748 - 10759