Single photon multiclock lock-in detection by picosecond timestamping

被引:7
作者
Jakob, Lukas A. [1 ]
Deacon, William M. [1 ]
Hicks, Oliver [2 ]
Manyakin, Ilya [1 ,3 ]
Ojambati, Oluwafemi S. [1 ]
Traxler, Michael [4 ]
Baumberg, Jeremy J. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Nanophoton Ctr, Cambridge CB3 0HE, England
[2] Cambridge Consultants, Cambridge CB4 0DW, England
[3] Natl Phys Lab, Hampton Rd, Teddington TW11 0LW, Middx, England
[4] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
TIME; MICROSCOPY; PROBE;
D O I
10.1364/OPTICA.441487
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Extracting signals at low single-photon count rates from large backgrounds is a challenge in many optical experiments and technologies. Here, we demonstrate a single-photon lock-in detection scheme based on continuous photon times-tamping to improve the SNR by more than two orders of magnitude. Through time-resolving the signal modulation induced by periodic perturbations, 98% of dark counts are filtered out and the <1 count/s contributions from several different nonlinear processes identified. As a proof-of-concept, coherent anti-Stokes Raman measurements are used to determine the vibrational lifetime of few molecules in a plasmonic nanocavity. This detection scheme can be applied to all single-photon counting experiments with any number of simultaneous modulation frequencies, greatly increasing SNR and resolving physical processes with picosecond time resolution while keeping the photon dosage small. The open instrumentation package provided here enables low-cost implementation. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:1646 / 1653
页数:8
相关论文
共 36 条
[1]  
[Anonymous], 2012, TIME CORRELATED SING
[2]  
[Anonymous], 2021, CAMBRIDGE NANOPHOTON
[3]   MEASUREMENT OF LOW LIGHT INTENSITIES BY SYNCHRONOUS SINGLE PHOTON COUNTING [J].
ARECCHI, FT ;
GATTI, E ;
SONA, A .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1966, 37 (07) :942-+
[4]   Extreme nanophotonics from ultrathin metallic gaps [J].
Baumberg, Jeremy J. ;
Aizpurua, Javier ;
Mikkelsen, Maiken H. ;
Smith, David R. .
NATURE MATERIALS, 2019, 18 (07) :668-678
[5]   A High-Resolution (&lt; 10 ps RMS) 48-Channel Time-to-Digital Converter (TDC) Implemented in a Field Programmable Gate Array (FPGA) [J].
Bayer, Eugen ;
Traxler, Michael .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2011, 58 (04) :1547-1552
[6]   Single-molecule optomechanics in "picocavities" [J].
Benz, Felix ;
Schmidt, Mikolaj K. ;
Dreismann, Alexander ;
Chikkaraddy, Rohit ;
Zhang, Yao ;
Demetriadou, Angela ;
Carnegie, Cloudy ;
Ohadi, Hamid ;
de Nijs, Bart ;
Esteban, Ruben ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
SCIENCE, 2016, 354 (6313) :726-729
[7]   Nanooptics of Molecular-Shunted Plasmonic Nanojunctions [J].
Benz, Felix ;
Tserkezis, Christos ;
Herrmann, Lars O. ;
de Nijs, Bart ;
Sanders, Alan ;
Sigle, Daniel O. ;
Pukenas, Laurynas ;
Evans, Stephen D. ;
Aizpurua, Javier ;
Baumberg, Jeremy J. .
NANO LETTERS, 2015, 15 (01) :669-674
[8]   Heterodyne pump-probe and four-wave mixing in semiconductor optical amplifiers using balanced lock-in detection [J].
Borri, P ;
Langbein, W ;
Mork, J ;
Hvam, JM .
OPTICS COMMUNICATIONS, 1999, 169 (1-6) :317-324
[9]   Computer-based photon-counting lock-in for phase detection at the shot-noise limit [J].
Braun, D ;
Libchaber, A .
OPTICS LETTERS, 2002, 27 (16) :1418-1420
[10]   Time-gated single-photon detection module with 110 ps transition time and up to 80 MHz repetition rate [J].
Buttafava, Mauro ;
Boso, Gianluca ;
Ruggeri, Alessandro ;
Dalla Mora, Alberto ;
Tosi, Alberto .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (08)