Detecting a conditional extreme value model

被引:15
作者
Das, Bikramjit [1 ]
Resnick, Sidney I. [1 ]
机构
[1] Cornell Univ, Sch Operat Res & Informat Engn, Ithaca, NY 14853 USA
关键词
Regular variation; Domain of attraction; Heavy tails; Asymptotic independence; Conditional extreme value model; TAIL; INDEPENDENCE; INFERENCE; NETWORK; LAWS;
D O I
10.1007/s10687-009-0097-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In classical extreme value theory probabilities of extreme events are estimated assuming all the components of a random vector to be in a domain of attraction of an extreme value distribution. In contrast, the conditional extreme value model assumes a domain of attraction condition on a sub-collection of the components of a multivariate random vector. This model has been studied in Heffernan and Tawn (JRSS B 66(3):497-546, 2004), Heffernan and Resnick (Ann Appl Probab 17(2):537-571, 2007), and Das and Resnick (2009). In this paper we propose three statistics which act as tools to detect this model in a bivariate set-up. In addition, the proposed statistics also help to distinguish between two forms of the limit measure that is obtained in the model.
引用
收藏
页码:29 / 61
页数:33
相关论文
共 30 条
[1]  
[Anonymous], 1983, RANDOM MEASURES, DOI 10.1515/9783112525609
[2]  
[Anonymous], 2008, SPRINGER SERIES OPER
[3]  
Billingsley Patrick, 1999, Convergence of probability measures, V2nd
[4]  
Coles S., 1999, Extremes, V2, P339, DOI [DOI 10.1023/A:1009963131610, 10.1023/A:1009963131610]
[5]  
COLES SG, 1991, J ROY STAT SOC B MET, V53, P377
[6]   QQ plots, random sets and data from a heavy tailed distribution [J].
Das, B. ;
Resnick, S. I. .
STOCHASTIC MODELS, 2008, 24 (01) :103-132
[7]  
DAS B, 2009, CONDITIONING EXTREME
[8]  
De Haan L., 1998, Extremes, V1, P7, DOI [10.1023/A:1009909800311, DOI 10.1023/A:1009909800311]
[9]  
DE HAAN L., 2006, SPRING S OPERAT RES, DOI 10.1007/0-387-34471-3
[10]  
DEHAAN L, 1977, Z WAHRSCHEINLICHKEIT, V40, P317