Enhanced CO2 conversion on highly-strained and oxygen-deficient BiVO4 photocatalyst

被引:61
作者
Akrami, Saeid [1 ]
Murakami, Yasushi [2 ]
Watanabe, Monotori [3 ]
Ishihara, Tatsumi [2 ,3 ]
Arita, Makoto [4 ]
Guo, Qixin [5 ]
Fuji, Masayoshi [1 ,6 ]
Edalati, Kaveh [3 ]
机构
[1] Nagoya Inst Technol, Dept Life Sci & Appl Chem, Tajimi 5070071, Japan
[2] Kyushu Univ, Fac Engn, Dept Appl Chem, Fukuoka 8190395, Japan
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, WPI, Fukuoka 8190395, Japan
[4] Kyushu Univ, Fac Engn, Dept Mat Sci & Engn, Fukuoka 8190395, Japan
[5] Saga Univ, Synchrotron Light Applicat Ctr, Dept Elect & Elect Engn, Saga 8408502, Japan
[6] Nagoya Inst Technol, Adv Ceram Res Ctr, Tajimi 5070071, Japan
关键词
Bismuth vanadate salt; Photocatalyst; Strain engineering; Defect engineering; Photocatalytic CO 2 conversion; VACANCIES; EFFICIENT; NANOPARTICLES; REDUCTION; SURFACE; TIO2; PHOTOREDUCTION; PHOTOANODES; OXIDATION; SIZE;
D O I
10.1016/j.cej.2022.136209
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bismuth vanadate (BiVO4) has recently received significant attention for photocatalytic CO2 conversion due to its low bandgap and high stability, but low position of the conduction band and high electron-hole recombination rate limit its photocatalytic activity. In this study, to overcome the drawbacks of BiVO4, oxygen vacancies and lattice strain are simultaneously introduced in this oxide using a high-pressure torsion process. The processed material not only shows the low recombination rate and enhanced conduction band level but also exhibits bandgap narrowing. The oxygen-deficient and highly-strained BiVO4 shows a high photocatalytic CO2 conversion rate with an activity comparable to the P25 TiO2 photocatalyst. The enhancement of photocatalytic activity is discussed based on the modification of band structure, enhanced light absorbance, the lifetime of excited electrons, and the role of oxygen vacancies as activation sites for CO2 photoreduction. This work introduces a feasible pathway to develop active photocatalysts for CO2 conversion by lattice strain and defect engineering.
引用
收藏
页数:13
相关论文
共 50 条
[21]   Selective methanol production from photocatalytic reduction of CO2 on BiVO4 under visible light irradiation [J].
Mao, Jin ;
Peng, Tianyou ;
Zhang, Xiaohu ;
Li, Kan ;
Zan, Ling .
CATALYSIS COMMUNICATIONS, 2012, 28 :38-41
[22]   Ru Nanoparticles Supported on Oxygen-Deficient 3DOM BiVO4: High-Performance Catalysts for the Visible-Light-Driven Selective Oxidation of Benzyl Alcohol [J].
Zhang, Kunfeng ;
Liu, Yuxi ;
Deng, Jiguang ;
Jing, Lin ;
Pei, Wenbo ;
Han, Zhuo ;
Zhang, Xing ;
Dai, Hongxing .
CHEMCATCHEM, 2019, 11 (24) :6398-6407
[23]   Synergistic Integration of AuCu Co-Catalyst with Oxygen Vacancies on TiO2 for Efficient Photocatalytic Conversion of CO2 to CH4 [J].
Jiang, Deli ;
Zhou, Yimeng ;
Zhang, Qianxiao ;
Song, Qi ;
Zhou, Changjian ;
Shi, Xiangli ;
Li, Di .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (39) :46772-46782
[24]   Enhanced photocatalytic performance for CO2 reduction via an S-scheme heterojunction between perovskite nanocrystals and BiVO4 [J].
Tsai, I. -Hua ;
Kuo, Yi-Ru ;
Hiramatsu, Hirotsugu ;
Diau, Eric Wei-Guang .
JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (09) :6513-6523
[25]   Effect of Gd and Y co-doping in BiVO4 photocatalyst for enhanced degradation of methylene blue dye [J].
Noor, Manifa ;
Sharmin, Fahmida ;
Al Mamun, M. A. ;
Hasan, Sajjad ;
Hakim, M. A. ;
Basith, M. A. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 895
[26]   Graphene-modulated assembly of zinc phthalocyanine on BiVO4 nanosheets for efficient visible-light catalytic conversion of CO2 [J].
Bian, Ji ;
Feng, Jiannan ;
Zhang, Ziqing ;
Sun, Jiawen ;
Chu, Mingna ;
Sun, Ling ;
Li, Xin ;
Tang, Dongyan ;
Jing, Liqiang .
CHEMICAL COMMUNICATIONS, 2020, 56 (36) :4926-4929
[27]   Synthesis of BiVO4 quantum dots/reduced graphene oxide composites for CO2 reduction [J].
Chen, Lu ;
Zhang, Maolin ;
Yang, Jianlong ;
Li, Yunxia ;
Sivalingam, Yuvaraj ;
Shi, Qiujin ;
Xie, Mingzheng ;
Han, Weihua .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2019, 102
[28]   0D/2D CeO2/BiVO4 S-scheme photocatalyst for production of solar fuels from CO2 [J].
Geng, Jiguo ;
Guo, Shixun ;
Zou, Zongyan ;
Yuan, Zhenzhou ;
Zhang, Dong ;
Yan, Xiaotong ;
Ning, Xuefeng ;
Fan, Xiujun .
FUEL, 2023, 333
[29]   Process modeling and optimization of simultaneous direct conversion of CO2 and CH4 greenhouse gas mixture over TiO2/webnet photocatalyst [J].
Merajin, M. Torabi ;
Sharifnia, S. ;
Mansouri, A. M. .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (03) :869-879
[30]   Unveiling BiVO4 photoelectrocatalytic potential for CO2 reduction at ambient temperature [J].
Silva, Ricardo Marques e ;
Dias, Eduardo Henrique ;
Escalona-Duran, Florymar ;
da Silva, Gelson Tiago dos Santos Tavares ;
Alnoush, Wajdi ;
de Oliveira, Jessica Ariane ;
Higgins, Drew ;
Ribeiro, Caue .
MATERIALS ADVANCES, 2024, 5 (11) :4857-4864