Trajectory planning for spherical robot using ant algorithm
被引:0
作者:
Rui, Yannian
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Peoples R ChinaSoochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Peoples R China
Rui, Yannian
[1
]
Gu, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Peoples R ChinaSoochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Peoples R China
Gu, Jun
[1
]
Zhu, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Peoples R ChinaSoochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Peoples R China
Zhu, Hui
[1
]
Chen, Yexiang
论文数: 0引用数: 0
h-index: 0
机构:
Soochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Peoples R ChinaSoochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Peoples R China
Chen, Yexiang
[1
]
机构:
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Peoples R China
来源:
WMSCI 2006: 10TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL II, PROCEEDINGS
|
2006年
关键词:
ant algorithm;
ant colony optimization;
spherical robot;
trajectory planning;
D O I:
暂无
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Ant algorithm is one kind of novel bionic optimization methodology. It assimilates the behavior characteristic of ant. and shows good performance in combinational optimization problems through its inside searching mechanism. In this paper. a novel trajectory planning method for a spherical robot using ant Colony Optimization algorithm is provided. The experiment demonstrates the feasibility of the proposed technique, with the robot can reaches destination in a satisfied trajectory with minimal probability of failure.