Bound Flavin-Cytochrome Model of Extracellular Electron Transfer in Shewanella oneidensis: Analysis by Free Energy Molecular Dynamics Simulations

被引:24
作者
Hong, Gongyi [1 ]
Pachter, Ruth [1 ]
机构
[1] US Air Force, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
关键词
BINDING FREE-ENERGIES; FORCE-FIELD; CRYSTAL-STRUCTURE; OXIDE REDUCTION; MR-1; TRANSPORT; CHARGE; EFFICIENT; NANOWIRES; POTENTIALS;
D O I
10.1021/acs.jpcb.6b03851
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flavins are known to enhance extracellular electron transfer (BET) in Shewanella oneidensis MR-1 bacteria, which reduce electron acceptors through outer-membrane (OM) cytochromes c. Free-shuttle and bound-redox cofactor mechanisms were proposed to explain this enhancement, but recent electro-chemical reports favor a flavin-bound model, proposing two one-electron reductions of flavin, namely, oxidized (Ox) to semiquinone (Sq) and semiquinone to hydroquinone (Hq), at anodic and cathodic conditions, respectively. In this work, to provide a mechanistic understanding of riboflavin (RF) binding at the multiheme OM cytochrome OmcA, we explored binding configurations at hemes 2, 5, 7, and 10. Subsequently, on the basis of molecular dynamics (MD) simulations, binding free energies and redox potential shifts upon RF binding for the Ox/Sq and Sq/Hq reductions were analyzed. Our results demonstrated an upshift in the Ox/Sq and a downshift in the Sq/Hq redox potentials, consistent with a bound RF OmcA model. Furthermore, binding free energy MD simulations indicated an RF binding preference at heme 7. MD simulations of the OmcA MtrC complex interfacing at hemes S revealed a small interprotein redox potential difference with an electron transfer rate of 10(7)-10(8)/s.
引用
收藏
页码:5617 / 5624
页数:8
相关论文
共 60 条
[21]  
Hess B, 1997, J COMPUT CHEM, V18, P1463, DOI 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO
[22]  
2-H
[23]   GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation [J].
Hess, Berk ;
Kutzner, Carsten ;
van der Spoel, David ;
Lindahl, Erik .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2008, 4 (03) :435-447
[24]   A semiempirical free energy force field with charge-based desolvation [J].
Huey, Ruth ;
Morris, Garrett M. ;
Olson, Arthur J. ;
Goodsell, David S. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (06) :1145-1152
[25]   Deciphering the Electron Transport Pathway for Graphene Oxide Reduction by Shewanella oneidensis MR-1 [J].
Jiao, Yongqin ;
Qian, Fang ;
Li, Yat ;
Wang, Gongming ;
Saltikov, Chad W. ;
Gralnick, Jeffrey A. .
JOURNAL OF BACTERIOLOGY, 2011, 193 (14) :3662-3665
[26]   Effect of Ionic Strength on the Rate of Extracellular Electron Transport in Shewanella oneidensis MR-1 through Bound-Flavin Semiquinones [J].
Kalathil, Shafeer ;
Hashimoto, Kazuhito ;
Okamoto, Akihiro .
CHEMELECTROCHEM, 2014, 1 (11) :1840-1843
[27]   Shewanella oneidensis MR-1 Bacterial Nanowires Exhibit p-Type, Tunable Electronic Behavior [J].
Leung, Kar Man ;
Wanger, Greg ;
El-Naggar, Mohamed Y. ;
Gorby, Yuri ;
Southam, Gordon ;
Lau, Woon Ming ;
Yang, Jun .
NANO LETTERS, 2013, 13 (06) :2407-2411
[28]   Exoelectrogenic bacteria that power microbial fuel cells [J].
Logan, Bruce E. .
NATURE REVIEWS MICROBIOLOGY, 2009, 7 (05) :375-381
[29]   How FMN binds to Anabaena apoflavodoxin -: A hydrophobic encounter at an open binding site [J].
Lostao, A ;
Daoudi, F ;
Irún, MP ;
Ramón, A ;
Fernández-Cabrera, C ;
Romero, A ;
Sancho, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (26) :24053-24061
[30]   Microbial nanowires for bioenergy applications [J].
Malvankar, Nikhil S. ;
Lovley, Derek R. .
CURRENT OPINION IN BIOTECHNOLOGY, 2014, 27 :88-95