Bound Flavin-Cytochrome Model of Extracellular Electron Transfer in Shewanella oneidensis: Analysis by Free Energy Molecular Dynamics Simulations

被引:24
作者
Hong, Gongyi [1 ]
Pachter, Ruth [1 ]
机构
[1] US Air Force, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
关键词
BINDING FREE-ENERGIES; FORCE-FIELD; CRYSTAL-STRUCTURE; OXIDE REDUCTION; MR-1; TRANSPORT; CHARGE; EFFICIENT; NANOWIRES; POTENTIALS;
D O I
10.1021/acs.jpcb.6b03851
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flavins are known to enhance extracellular electron transfer (BET) in Shewanella oneidensis MR-1 bacteria, which reduce electron acceptors through outer-membrane (OM) cytochromes c. Free-shuttle and bound-redox cofactor mechanisms were proposed to explain this enhancement, but recent electro-chemical reports favor a flavin-bound model, proposing two one-electron reductions of flavin, namely, oxidized (Ox) to semiquinone (Sq) and semiquinone to hydroquinone (Hq), at anodic and cathodic conditions, respectively. In this work, to provide a mechanistic understanding of riboflavin (RF) binding at the multiheme OM cytochrome OmcA, we explored binding configurations at hemes 2, 5, 7, and 10. Subsequently, on the basis of molecular dynamics (MD) simulations, binding free energies and redox potential shifts upon RF binding for the Ox/Sq and Sq/Hq reductions were analyzed. Our results demonstrated an upshift in the Ox/Sq and a downshift in the Sq/Hq redox potentials, consistent with a bound RF OmcA model. Furthermore, binding free energy MD simulations indicated an RF binding preference at heme 7. MD simulations of the OmcA MtrC complex interfacing at hemes S revealed a small interprotein redox potential difference with an electron transfer rate of 10(7)-10(8)/s.
引用
收藏
页码:5617 / 5624
页数:8
相关论文
共 60 条
[2]   Nanotechnology and neurophysiology [J].
Angle, Matthew R. ;
Cui, Bianxiao ;
Melosh, Nicholas A. .
CURRENT OPINION IN NEUROBIOLOGY, 2015, 32 :132-140
[3]   EFFICIENT ESTIMATION OF FREE-ENERGY DIFFERENCES FROM MONTE-CARLO DATA [J].
BENNETT, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (02) :245-268
[4]   Multi-heme proteins: Nature's electronic multi-purpose tool [J].
Bewley, Kathryn D. ;
Ellis, Katie E. ;
Firer-Sherwood, Mackenzie A. ;
Elliott, Sean J. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (8-9) :938-948
[5]   Absolute binding free energies: A quantitative approach for their calculation [J].
Boresch, S ;
Tettinger, F ;
Leitgeb, M ;
Karplus, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (35) :9535-9551
[6]   Flavin Binding to the Deca-heme Cytochrome MtrC: Insights from Computational Molecular Simulation [J].
Breuer, Marian ;
Rosso, Kevin M. ;
Blumberger, Jochen .
BIOPHYSICAL JOURNAL, 2015, 109 (12) :2614-2624
[7]   Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities [J].
Breuer, Marian ;
Rosso, Kevin M. ;
Blumberger, Jochen ;
Butt, Julea N. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2015, 12 (102)
[8]   Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials [J].
Breuer, Marian ;
Rosso, Kevin M. ;
Blumberger, Jochen .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (02) :611-616
[9]  
Case D.A., 2014, AmberTools 14
[10]   Structure of a bacterial cell surface decaheme electron conduit [J].
Clarke, Thomas A. ;
Edwards, Marcus J. ;
Gates, Andrew J. ;
Hall, Andrea ;
White, Gaye F. ;
Bradley, Justin ;
Reardon, Catherine L. ;
Shi, Liang ;
Beliaev, Alexander S. ;
Marshall, Matthew J. ;
Wang, Zheming ;
Watmough, Nicholas J. ;
Fredrickson, James K. ;
Zachara, John M. ;
Butt, Julea N. ;
Richardson, David J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (23) :9384-9389