Fiber-optic probe for noninvasive real-time determination of tissue optical properties at multiple wavelengths

被引:106
作者
Dam, JS [1 ]
Pedersen, CB
Dalgaard, T
Fabricius, PE
Aruna, P
Andersson-Engels, S
机构
[1] Bang & Olufsen Medicom AS, DK-7600 Struer, Denmark
[2] Lund Inst Technol, Dept Phys, SE-22100 Lund, Sweden
[3] Anna Univ, Madras 600025, Tamil Nadu, India
关键词
D O I
10.1364/AO.40.001155
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a compact, fast, and versatile fiber-optic probe system for real-time determination of tissue optical properties from spatially resolved continuous-wave diffuse reflectance measurements. The system collects one set of reflectance data from six source-detector distances at four arbitrary wavelengths with a maximum overall sampling rate of 100 Hz. Multivariate calibration techniques based on two-dimensional polynomial fitting are employed to extract and display the absorption and reduced scattering coefficients in real-time mode. The four wavelengths of the current configuration are 660, 785, 805, and 974 nm, respectively. Cross-validation tests on a 6 x 7 calibration matrix of Intralipid-dye phantoms showed that the mean prediction error at, e.g., 785 nm was 2.8% for the absorption coefficient and 1.3% for the reduced scattering coefficient. The errors are relative to the range of the optical properties of the phantoms at 785 nm, which were 0-0.3/cm for the absorption coefficient and 6-16/cm for the reduced scattering coefficient. Finally, we also present and discuss results from preliminary skin tissue measurements. (C) 2001 Optical Society of America
引用
收藏
页码:1155 / 1164
页数:10
相关论文
共 35 条
[1]   MULTISPECTRAL TISSUE CHARACTERIZATION WITH TIME-RESOLVED DETECTION OF DIFFUSELY SCATTERED WHITE-LIGHT [J].
ANDERSSONENGELS, S ;
BERG, R ;
PERSSON, A ;
SVANBERG, S .
OPTICS LETTERS, 1993, 18 (20) :1697-1699
[2]   Clinical determination of tissue optical properties by endoscopic spatially resolved reflectometry [J].
Bays, R ;
Wagnieres, G ;
Robert, D ;
Braichotte, D ;
Savary, JF ;
Monnier, P ;
vandenBergh, H .
APPLIED OPTICS, 1996, 35 (10) :1756-1766
[3]   REFRACTIVE-INDEX OF SOME MAMMALIAN-TISSUES USING A FIBER OPTIC CLADDING METHOD [J].
BOLIN, FP ;
PREUSS, LE ;
TAYLOR, RC ;
FERENCE, RJ .
APPLIED OPTICS, 1989, 28 (12) :2297-2303
[4]   Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient [J].
Bruulsema, JT ;
Hayward, JE ;
Farrell, TJ ;
Patterson, MS ;
Heinemann, L ;
Berger, M ;
Koschinsky, T ;
SandahlChristiansen, J ;
Orskov, H .
OPTICS LETTERS, 1997, 22 (03) :190-192
[5]   Phase measurement of light absorption and scatter in human tissue [J].
Chance, B ;
Cope, M ;
Gratton, E ;
Ramanujam, N ;
Tromberg, B .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1998, 69 (10) :3457-3481
[6]   A REVIEW OF THE OPTICAL-PROPERTIES OF BIOLOGICAL TISSUES [J].
CHEONG, WF ;
PRAHL, SA ;
WELCH, AJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (12) :2166-2185
[7]   Determination of tissue optical properties from diffuse reflectance profiles by multivariate calibration [J].
Dam, JS ;
Andersen, PE ;
Dalgaard, T ;
Fabricius, PE .
APPLIED OPTICS, 1998, 37 (04) :772-778
[8]   Multiple polynomial regression method for determination of biomedical optical properties from integrating sphere measurements [J].
Dam, JS ;
Dalgaard, T ;
Fabricius, PE ;
Andersson-Engels, S .
APPLIED OPTICS, 2000, 39 (07) :1202-1209
[9]   The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy [J].
Doornbos, RMP ;
Lang, R ;
Aalders, MC ;
Cross, FW ;
Sterenborg, HJCM .
PHYSICS IN MEDICINE AND BIOLOGY, 1999, 44 (04) :967-981
[10]   FREQUENCY-DOMAIN MULTICHANNEL OPTICAL-DETECTOR FOR NONINVASIVE TISSUE SPECTROSCOPY AND OXIMETRY [J].
FANTINI, S ;
FRANCESCHINI, MA ;
MAIER, JS ;
WALKER, SA ;
BARBIERI, B ;
GRATTON, E .
OPTICAL ENGINEERING, 1995, 34 (01) :32-42