Enhanced conversion reaction kinetics in low crystallinity SnO2/CNT anodes for Na-ion batteries

被引:117
作者
Cui, Jiang [1 ,2 ]
Xu, Zheng-Long [1 ]
Yao, Shanshan [1 ]
Huang, Jiaqiang [1 ]
Huang, Jian-Qiu [1 ]
Abouali, Sara [1 ]
Garakani, Mohammad Akbari [1 ]
Ning, Xiaohui [2 ]
Kim, Jang-Kyo [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Hong Kong, Hong Kong, Peoples R China
[2] Xi An Jiao Tong Univ, Ctr Advancing Mat Performance Nanoscale CAMP Nano, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
关键词
SUPERIOR ELECTROCHEMICAL PERFORMANCE; REDUCED GRAPHENE OXIDE; WALLED CARBON NANOTUBE; LI-ION; ELECTRODE MATERIAL; ENERGY-STORAGE; TIN OXIDE; SODIUM; INSERTION; NANOCOMPOSITES;
D O I
10.1039/c6ta03541h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The specific capacities of SnO2 anodes in sodium ion batteries (SIBs) are far below the values expected from theory. Herein, we propose that the kinetically-controlled, reversible 'conversion reaction' between Na ions and SnO2 is responsible for Na ion storage in SnO2 anodes where the ion diffusion rate is the limiting factor. This revelation is contrary to the current understanding of the 'alloying reaction' as the major reaction process. Aiming to fully utilize the theoretical capacity from the conversion reaction, a composite electrode consisting of carbon nanotubes coated with a mainly amorphous SnO2 phase together with crystalline nanoparticles is synthesized. The SnO2/CNT anodes deliver a superior specific capacity of 630.4 mA h g(-1) at 0.1 A g(-1) and 324.1 mA h g(-1) at a high rate of 1.6 A g(-1) due to the enhanced kinetics. The volume expansion of the composite is accommodated by the CNT substrate, giving rise to an excellent 69% capacity retention after 300 cycles. The aforementioned findings give new insight into the fundamental understanding of the electrochemical kinetics of SnO2 electrodes and offer a potential solution to the low capacity and poor cyclic stability of other metal oxide anodes based on conversion reactions.
引用
收藏
页码:10964 / 10973
页数:10
相关论文
共 64 条
[1]   Carbon black:: a promising electrode material for sodium-ion batteries [J].
Alcántara, R ;
Jiménez-Mateos, JM ;
Lavela, P ;
Tirado, JL .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (11) :639-642
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   SnO2 Nanocrystalline Thin Films by XPS [J].
Barreca, Davide ;
Garon, Simona ;
Tondello, Eugenio ;
Zanella, Pierino .
Surface Science Spectra, 2000, 7 (02) :81-85
[4]   Single-oscillator model and determination of optical constants of spray pyrolyzed amorphous SnO2 thin films [J].
Caglar, Y. ;
Ilican, S. ;
Caglar, M. .
EUROPEAN PHYSICAL JOURNAL B, 2007, 58 (03) :251-256
[5]   Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications [J].
Cao, Yuliang ;
Xiao, Lifen ;
Sushko, Maria L. ;
Wang, Wei ;
Schwenzer, Birgit ;
Xiao, Jie ;
Nie, Zimin ;
Saraf, Laxmikant V. ;
Yang, Zhengguo ;
Liu, Jun .
NANO LETTERS, 2012, 12 (07) :3783-3787
[6]   SnO2-Based Nanomaterials: Synthesis and Application in Lithium-Ion Batteries [J].
Chen, Jun Song ;
Lou, Xiong Wen .
SMALL, 2013, 9 (11) :1877-1893
[7]   Chemical oxidation of multiwalled carbon nanotubes [J].
Datsyuk, V. ;
Kalyva, M. ;
Papagelis, K. ;
Parthenios, J. ;
Tasis, D. ;
Siokou, A. ;
Kallitsis, I. ;
Galiotis, C. .
CARBON, 2008, 46 (06) :833-840
[8]   Sodiation vs. lithiation phase transformations in a high rate - high stability SnO2 in carbon nanocomposite [J].
Ding, Jia ;
Li, Zhi ;
Wang, Huanlei ;
Cui, Kai ;
Kohandehghan, Alireza ;
Tan, Xuehai ;
Karpuzov, Dimitre ;
Mitlin, David .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (13) :7100-7111
[9]   Carbon-Confined Sno2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material [J].
Dirican, Mahmut ;
Lu, Yao ;
Ge, Yeqian ;
Yildiz, Ozkan ;
Zhang, Xiangwu .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (33) :18387-18396
[10]   Sodium and sodium-ion energy storage batteries [J].
Ellis, Brian L. ;
Nazar, Linda F. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :168-177