Evaluation of an airborne triple-pulsed 2 μm IPDA lidar for simultaneous and independent atmospheric water vapor and carbon dioxide measurements

被引:88
作者
Refaat, Tamer F. [1 ]
Singh, Upendra N. [1 ]
Yu, Jirong [1 ]
Petros, Mulugeta [1 ]
Ismail, Syed [1 ]
Kavaya, Michael J. [1 ]
Davis, Kenneth J. [2 ]
机构
[1] NASA Langley Res Ctr, Hampton, VA 23681 USA
[2] Penn State Univ, University Pk, PA 16802 USA
关键词
DIFFERENTIAL ABSORPTION LIDAR; CO2; SENSITIVITY; FEEDBACK;
D O I
10.1364/AO.54.001387
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Water vapor and carbon dioxide are the most dominant greenhouse gases directly contributing to the Earth's radiation budget and global warming. A performance evaluation of an airborne triple-pulsed integrated path differential absorption (IPDA) lidar system for simultaneous and independent monitoring of atmospheric water vapor and carbon dioxide column amounts is presented. This system leverages a state-of-the-art Ho:Tm:YLF triple-pulse laser transmitter operating at 2.05 mu m wavelength. The transmitter provides wavelength tuning and locking capabilities for each pulse. The IPDA lidar system leverages a low risk and technologically mature receiver system based on InGaAs pin detectors. Measurement methodology and wavelength setting are discussed. The IPDA lidar return signals and error budget are analyzed for airborne operation on-board the NASA B-200. Results indicate that the IPDA lidar system is capable of measuring water vapor and carbon dioxide differential optical depth with 0.5% and 0.2% accuracy, respectively, from an altitude of 8 km to the surface and with 10 s averaging. Provided availability of meteorological data, in terms of temperature, pressure, and relative humidity vertical profiles, the differential optical depth conversion into weighted-average column dry-air volume-mixing ratio is also presented. (C) 2015 Optical Society of America
引用
收藏
页码:1387 / 1398
页数:12
相关论文
共 28 条
[1]   Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region [J].
Ambrico, PF ;
Amodeo, A ;
Di Girolamo, P ;
Spinelli, N .
APPLIED OPTICS, 2000, 39 (36) :6847-6865
[2]  
Anderson GP., 1986, Environmental research papers
[3]  
[Anonymous], 2012, ATMOS MEAS TECH DISC, DOI DOI 10.5194/AMTD-5-5641-2012
[4]   TransCom 3 inversion intercomparison:: Impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988-2003 -: art. no. GB1002 [J].
Baker, DF ;
Law, RM ;
Gurney, KR ;
Rayner, P ;
Peylin, P ;
Denning, AS ;
Bousquet, P ;
Bruhwiler, L ;
Chen, YH ;
Ciais, P ;
Fung, IY ;
Heimann, M ;
John, J ;
Maki, T ;
Maksyutov, S ;
Masarie, K ;
Prather, M ;
Pak, B ;
Taguchi, S ;
Zhu, Z .
GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (01)
[5]   Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar [J].
Dobler, Jeremy T. ;
Harrison, F. Wallace ;
Browell, Edward V. ;
Lin, Bing ;
McGregor, Doug ;
Kooi, Susan ;
Choi, Yonghoon ;
Ismail, Syed .
APPLIED OPTICS, 2013, 52 (12) :2874-2892
[6]   Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar:: a sensitivity analysis [J].
Ehret, G. ;
Kiemle, C. ;
Wirth, M. ;
Amediek, A. ;
Fix, A. ;
Houweling, S. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 90 (3-4) :593-608
[7]  
Elterman L., 1968, AFCRL680153 ENV RES, P285
[8]   Mapping of CO2 at high spatiotemporal resolution using satellite observations: Global distributions from OCO-2 [J].
Hammerling, Dorit M. ;
Michalak, Anna M. ;
Kawa, S. Randolph .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[9]   Water vapor feedback and global warming [J].
Held, IM ;
Soden, BJ .
ANNUAL REVIEW OF ENERGY AND THE ENVIRONMENT, 2000, 25 :441-475
[10]   AIRBORNE AND SPACEBORNE LIDAR MEASUREMENTS OF WATER-VAPOR PROFILES - A SENSITIVITY ANALYSIS [J].
ISMAIL, S ;
BROWELL, EV .
APPLIED OPTICS, 1989, 28 (17) :3603-3615