Structural Design of Composite Polymer Electrolytes for Solid-state Lithium Metal Batteries

被引:23
作者
Liao, Wenchao [1 ]
Liu, Chen [1 ]
机构
[1] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Res Ctr Interfacial Engn Funct Mat, Shenzhen Key Lab Polymer Sci & Technol, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium batteries; solid composite electrolytes; structural design; interfaces; ionic conductivity; ION-CONDUCTING MEMBRANE; ELECTROCHEMICAL PERFORMANCE; HYBRID ELECTROLYTE; CERAMIC FILLERS; ENERGY DENSITY; LI7LA3ZR2O12; TRANSPORT; ANODE; NANOPARTICLES; FLEXIBILITY;
D O I
10.1002/cnma.202100262
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composite polymer electrolytes with good safety and improved electrochemical performance have attracted widespread attention. However, the ion conduction ability at room temperature and interface compatibility between the electrolyte and electrode still face huge challenges, which greatly hinders the overall performance of solid-state batteries. Therefore, the focus of this review is on the impact of the composite electrolyte structure on its ion conduction ability and interfacial compatibility, including physical contact of the electrolyte with electrodes, formation of lithium dendrites and space charge layer, adapting to high-voltage cathode, as well as corresponding solving strategies. Moreover, the structural design-based ion transport mechanism is highlighted, and the inorganic component with 0D, 1D, 2D, 3D and vertical structure are summarized. The purpose here is to outline the problems and challenges in structural design of composite electrolytes and their interfacial compatibility with various electrodes, allowing for target-oriented research for high performance solid-state lithium metal batteries.
引用
收藏
页码:1177 / 1187
页数:11
相关论文
共 121 条
[1]  
[Anonymous], 2020, ANGEW CHEM-GER EDIT, V132, P4160
[2]  
[Anonymous], 2018, ANGEW CHEM-GER EDIT, V130, P2118
[3]   Nanocomposite with fast Li+ conducting percolation network: Solid polymer electrolyte with Li+ non-conducting filler [J].
Ao, Xin ;
Wang, Xiaotao ;
Tan, Jiewen ;
Zhang, Shaolong ;
Su, Chenliang ;
Dong, Lei ;
Tang, Mingxue ;
Wang, Zhongchang ;
Tian, Bingbing ;
Wang, Haihui .
NANO ENERGY, 2021, 79
[4]   Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhao, Fei ;
Zhou, Xingyi ;
Ding, Yu ;
Yu, Guihua .
ENERGY STORAGE MATERIALS, 2018, 15 :46-52
[5]   A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhang, Jun ;
Zhou, Xingyi ;
Zhao, Fei ;
Shi, Ye ;
Goodenough, John B. ;
Yu, Guihua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) :2096-2100
[6]   IONIC CONDUCTIVITIES FOR POLY(ETHYLENE OXIDE) COMPLEXES WITH LITHIUM-SALTS OF MONOBASIC AND DIBASIC ACIDS AND BLENDS OF POLY(ETHYLENE OXIDE) WITH LITHIUM-SALTS OF ANIONIC POLYMERS [J].
BANNISTER, DJ ;
DAVIES, GR ;
WARD, IM ;
MCINTYRE, JE .
POLYMER, 1984, 25 (09) :1291-1296
[7]   A hybrid solid electrolyte Li0.33La0.557TiO3/poly(acylonitrile) membrane infiltrated with a succinonitrile-based electrolyte for solid state lithium-ion batteries [J].
Bi, Jiaying ;
Mu, Daobin ;
Wu, Borong ;
Fu, Jiale ;
Yang, Hao ;
Mu, Ge ;
Zhang, Ling ;
Wu, Feng .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (02) :706-713
[8]   Cathode supported solid lithium batteries enabling high energy density and stable cyclability [J].
Bi, Zhijie ;
Mu, Shuang ;
Zhao, Ning ;
Sun, Wuhui ;
Huang, Weilin ;
Guo, Xiangxin .
ENERGY STORAGE MATERIALS, 2021, 35 :512-519
[9]   Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries [J].
Chen, Fei ;
Yang, Dunjie ;
Zha, Wenping ;
Zhu, Bodi ;
Zhang, Yanhua ;
Li, Junyang ;
Gu, Yuping ;
Shen, Qiang ;
Zhang, Lianmeng ;
Sadoway, Donald R. .
ELECTROCHIMICA ACTA, 2017, 258 :1106-1114
[10]   Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery [J].
Chen, Hao ;
Adekoya, David ;
Hencz, Luke ;
Ma, Jun ;
Chen, Su ;
Yan, Cheng ;
Zhao, Huijun ;
Cui, Guanglei ;
Zhang, Shanqing .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)