Fluoroethene (FE) is a stable molecule in aqueous solution and its aerobic transformation potentially yields F-. This work evaluated if FE is a suitable surrogate for monitoring aerobic vinyl chloride (VC) utilization or cometabolic transformation. Experiments were carried out with three isolates, Mycobacterium strain EE13a, Mycobacterium strain JS60, and Nocardioides strain JS614 to evaluate if their affinities for FE and VC and their rates of transformation were comparable and whether the transformation of FE and F- accumulation could be correlated with VC utilization. JS614 grew on FE in addition to VC, making it the first organism reported to use FE as a sole carbon and energy source. EE13a cometabolized VC and FE, and JS60 catabolized VC and cometabolized FE. There was little difference among the three strains in the K-s or k(max) values for VC or FE. Competitive inhibition modeled the temporal responses of FE and VC transformations and Cl- and F- release when both substrates were present. Both the rate of FE transformation and rate of F- accumulation could be correlated with the rate of aerobic transformation of VC and showed promise for estimating VC rates in situ using FE as a reactive surrogate.