Bombieri-type theorems of nonlinear Weyl sums over primes in short intervals

被引:0
作者
Yao, Yanjun [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan 030006, Shanxi, Peoples R China
关键词
Estimates on exponential sums; sums over primes; exponential sum in short intervals; ARITHMETIC PROGRESSIONS; VARIABLES;
D O I
10.1142/S1793042118501531
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the mean-value estimate for nonlinear Weyl sums over primes in short intervals and establish the related Bombieri-type theorems. These results have applications in additive problems with prime variables in short intervals.
引用
收藏
页码:2571 / 2581
页数:11
相关论文
共 17 条
[1]   Mean values of Dirichlet polynomials and applications to linear equations with prime variables [J].
Choi, Stephen Kwok-Kwong ;
Kumchev, Angel V. .
ACTA ARITHMETICA, 2006, 123 (02) :125-142
[2]  
Huxley M.N, 1974, Acta Arith., V26, P435, DOI DOI 10.4064/AA-26-4-435-444
[3]   BOMBIERIS THEOREM IN SHORT INTERVALS [J].
HUXLEY, MN ;
IWANIEC, H .
MATHEMATIKA, 1975, 22 (44) :188-194
[4]  
Jutila Matti, 1969, ACTA ARITH, V16, P207, DOI 10.4064/aa-16-2-207-216
[5]   Enlarged major arcs in the Waring-Goldbach problem [J].
Li, Taiyu .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (01) :205-217
[6]  
Liu J. Y., 2005, JAPAN J MATH, V31, P379
[7]   On Lagrange's theorem with prime variables [J].
Liu, JY .
QUARTERLY JOURNAL OF MATHEMATICS, 2003, 54 :453-462
[8]  
Liu JY, 1997, ACTA ARITH, V82, P197
[9]   MEAN VALUE THEOREM FOR REMAINDER TERM IN PRIME NUMBER THEOREM FOR SHORT ARITHMETIC PROGRESSIONS [J].
MOTOHASHI, Y .
PROCEEDINGS OF THE JAPAN ACADEMY, 1971, 47 (08) :653-+
[10]   BOMBIERIS THEOREM IN SHORT INTERVALS .2. [J].
PERELLI, A ;
PINTZ, J ;
SALERNO, S .
INVENTIONES MATHEMATICAE, 1985, 79 (01) :1-9