Sustainable Second-Generation Ethanol Production from Switchgrass Biomass via Co-fermentation of Pentoses and Hexoses Using Novel Wild Yeasts

被引:8
作者
Antunes, Felipe Antonio Fernandes [1 ]
Rajan, Kalavathy [2 ]
Djioleu, Angele [3 ]
Rocha, Thiago Moura [1 ]
Brumano, Larissa Pereira [1 ]
de Souza Melo, Yasmin Cristhine [1 ]
dos Santos, Julio Cesar [1 ]
Rosa, Carlos A. [4 ]
Carrier, Danielle Julie [2 ]
da Silva, Silvio Silverio [1 ]
机构
[1] Univ Sao Paulo, Engn Sch Lorena, Dept Biotechnol, Estr Municipal Campinho, BR-12602810 Lorena, SP, Brazil
[2] Univ Tennessee, Dept Biosyst Engn & Soil Sci, 2506 EJ Chapman Dr, Knoxville, TN 37996 USA
[3] Univ Arkansas, Dept Biol & Agr Engn, 203 White Engn Hall, Fayetteville, AR 72701 USA
[4] Univ Fed Minas Gerais, Inst Biol Sci, Av Pres Antonio Carlos, BR-66273127 Pampulha, MG, Brazil
基金
美国国家科学基金会; 巴西圣保罗研究基金会; 美国能源部;
关键词
Sequential acid-alkaline pretreatment; Full factorial design; Hemicellulosic hydrolysate; Enzymatic saccharification; C5; fermentation; SUGARCANE BAGASSE; LIGNOCELLULOSIC BIOMASS; ALKALINE PRETREATMENT; HYDROXIDE PRETREATMENT; FUEL ETHANOL; BIOETHANOL; TECHNOLOGY; CONVERSION; BIOFUELS; XYLOSE;
D O I
10.1007/s12155-021-10302-3
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The production of second-generation (2G) ethanol remains an interesting proposition for the implementation of sustainable and net carbon-neutral energy systems. To be economically viable, 2G biorefineries must make use of all processing streams, including the less desirable pentose (C5) sugar stream. In this work, a strategy of sequential dilute acid and alkaline pretreatment of the lignocellulosic feedstock, switchgrass, was implemented for improving the fermentable sugar yield. The hemicellulose-enriched hydrolysate obtained after dilute acid pretreatment was fermented by a newly isolated wild Scheffersomyces parashehatae strain-UFMG-HM-60.1b; the corresponding ethanol yield (Y-PS) and volumetric productivity (Q(P)) were 0.19 g/g and 0.16 g/L h, respectively. The remaining switchgrass cellulignin fraction was subjected to optimized alkaline delignification at 152 oC for 30 min. Then, the delignified solid fraction was subjected to contiguous enzymatic saccharification and fermentation releasing a glucose (C6) sugar stream. The control yeast strain, Saccharomyces cerevisiae 174, displayed an ethanol Y-PS of 0.46 g/g and Q(P) of 0.70 g/L h for the C6 sugar stream, whereas the above-mentioned wild strain presented Y-PS and Q(P) of 0.29 g/g and 0.38 g/L h, respectively. Upon combining the conversion of hemicellulose (37%) and cellulose-derived sugars (57%), the wild S. parashehatae strain provided higher yield (94%) than the generic S. cerevisiae (90%). Henceforth, our sequential two-stage pretreatment and fermentation of C5 and C6 sugar streams provides a pathway for maximum utilization of switchgrass carbohydrates for 2G ethanol production.
引用
收藏
页码:1157 / 1168
页数:12
相关论文
共 50 条
[1]  
Akhtar M S., 2001, J. Biol. Sci, V1, P398, DOI DOI 10.3923/JBS.2001.398.400
[2]   Pretreatment of sugarcane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii [J].
Alves, LA ;
Felipe, MGA ;
Silva, JBAE ;
Silva, SS ;
Prata, AMR .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1998, 70-2 (1) :89-98
[3]   Repeated batches as a feasible industrial process for hemicellulosic ethanol production from sugarcane bagasse by using immobilized yeast cells [J].
Antunes, F. A. F. ;
Santos, J. C. ;
Chandel, A. K. ;
Carrier, D. J. ;
Peres, G. F. D. ;
Milessi, T. S. S. ;
da Silva, S. S. .
CELLULOSE, 2019, 26 (06) :3787-3800
[4]   Comparative study of cellulosic sugars production from sugarcane bagasse after dilute nitric acid, dilute sodium hydroxide and sequential nitric acid-sodium hydroxide pretreatment [J].
Ascencio, Jesus J. ;
Chandel, Anuj K. ;
Philippini, Rafael R. ;
da Silva, Silvio S. .
BIOMASS CONVERSION AND BIOREFINERY, 2020, 10 (04) :813-822
[5]   Commercializing lignocellulosic bioethanol: technology bottlenecks and possible remedies [J].
Banerjee, Saumita ;
Mudliar, Sandeep ;
Sen, Ramkrishna ;
Giri, Balendu ;
Satpute, Devanand ;
Chakrabarti, Tapan ;
Pandey, R. A. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2010, 4 (01) :77-93
[6]   Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products [J].
Baruah, Julie ;
Nath, Bikash Kar ;
Sharma, Ritika ;
Kumar, Sachin ;
Deka, Ramesh Chandra ;
Baruah, Deben Chandra ;
Kalita, Eeshan .
FRONTIERS IN ENERGY RESEARCH, 2018, 6
[7]   Xylose and some non-sugar carbon sources cause catabolite repression in Saccharomyces cerevisiae [J].
Belinchón, MM ;
Gancedo, JM .
ARCHIVES OF MICROBIOLOGY, 2003, 180 (04) :293-297
[8]   Conversion of C6 and C5 sugars in undetoxified wet exploded bagasse hydrolysates using Scheffersomyces (Pichia) stipitis CBS6054 [J].
Biswas, Rajib ;
Uellendahl, Hinrich ;
Ahring, Birgitte K. .
AMB EXPRESS, 2013, 3 :1-7
[9]   Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption [J].
Branco, Rita H. R. ;
Amandio, Mariana S. T. ;
Serafim, Luisa S. ;
Xavier, Ana M. R. B. .
ENERGIES, 2020, 13 (03)
[10]   NADH-LINKED ALDOSE REDUCTASE - THE KEY TO ANAEROBIC ALCOHOLIC FERMENTATION OF XYLOSE BY YEASTS [J].
BRUINENBERG, PM ;
DEBOT, PHM ;
VANDIJKEN, JP ;
SCHEFFERS, WA .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 1984, 19 (04) :256-260