Quantum-Enabled 6G Wireless Networks: Opportunities and Challenges

被引:72
作者
Wang, Chonggang [1 ]
Rahman, Akbar [2 ]
机构
[1] InterDigital Commun Inc, Wilmington, DE 19809 USA
[2] InterDigital, Wilmington, DE USA
关键词
6G mobile communication; Wireless sensor networks; Quantum computing; Quantum entanglement; 5G mobile communication; Quantum key distribution;
D O I
10.1109/MWC.006.00340
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With the increasing number of commercial 5G deployments, research on beyond 5G (B5G) and 6G has started in earnest. Although it is too early to clearly identify what 6G systems will look like or how they will be designed, it is certain that 6G systems will support novel use cases with challenging key performance indicators (KPIs), which will be empowered by new enabling technologies and network architectures. In parallel with the evolution of cellular systems from 5G toward 6G, quantum information technology (QIT) has been evolving rapidly in recent years in terms of quantum communications and quantum computing. It is envisioned that QIT will enable and boost future 6G systems from both communication and computing perspectives. For example, secure quantum communications such as quantum key distribution can be leveraged to improve 6G security. This article aims to provide a technology-driven and visionary description and exploration on how QIT can be leveraged for future 6G wireless networks.
引用
收藏
页码:58 / 69
页数:12
相关论文
共 15 条
[1]  
[Anonymous], 2020, Army researchers see path to quantum computing at room temperature
[2]   Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies [J].
Awschalom, David ;
Berggren, Karl K. ;
Bernien, Hannes ;
Bhave, Sunil ;
Carr, Lincoln D. ;
Davids, Paul ;
Economou, Sophia E. ;
Englund, Dirk ;
Faraon, Andrei ;
Fejer, Martin ;
Guha, Saikat ;
Gustafsson, Martin, V ;
Hu, Evelyn ;
Jiang, Liang ;
Kim, Jungsang ;
Korzh, Boris ;
Kumar, Prem ;
Kwiat, Paul G. ;
Loncar, Marko ;
Lukin, Mikhail D. ;
Miller, David A. B. ;
Monroe, Christopher ;
Nam, Sae Woo ;
Narang, Prineha ;
Orcutt, Jason S. ;
Raymer, Michael G. ;
Safavi-Naeini, Amir H. ;
Spiropulu, Maria ;
Srinivasan, Kartik ;
Sun, Shuo ;
Vuckovic, Jelena ;
Waks, Edo ;
Walsworth, Ronald ;
Weiner, Andrew M. ;
Zhang, Zheshen .
PRX QUANTUM, 2021, 2 (01)
[3]   Quantum Search Algorithms for Wireless Communications [J].
Botsinis, Panagiotis ;
Alanis, Dimitrios ;
Babar, Zunaira ;
Hung Viet Nguyen ;
Chandra, Daryus ;
Ng, Soon Xin ;
Hanzo, Lajos .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (02) :1209-1242
[4]   Hybrid QKD Protocol Outperforming Both DV- and CV-QKD Protocols [J].
Djordjevic, Ivan B. .
IEEE PHOTONICS JOURNAL, 2020, 12 (01)
[5]   A review of quantum and hybrid quantum/classical blockchain protocols [J].
Edwards, M. ;
Mashatan, A. ;
Ghose, S. .
QUANTUM INFORMATION PROCESSING, 2020, 19 (06)
[6]   Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation [J].
Endo, Suguru ;
Cai, Zhenyu ;
Benjamin, Simon C. ;
Yuan, Xiao .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (03)
[7]   FireFly: A Reconfigurable Wireless Data Center Fabric Using Free-Space Optics [J].
Hamedazimi, Navid ;
Qazi, Zafar ;
Gupta, Himanshu ;
Sekar, Vyas ;
Das, Samir R. ;
Longtin, Jon P. ;
Shah, Himanshu ;
Tanwer, Ashish .
ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2014, 44 (04) :319-330
[8]  
Huang L, 2020, PROC SPIE
[9]  
Kim M., 2019, ACM SIGCOMM 2019, P19
[10]  
Kozlowski W., 2021, Tech. Rep. draft-irtf-qirg-principles-07, 9