Some properties of q-Bernstein-Durrmeyer operators

被引:4
|
作者
Karsli, Harun [1 ]
机构
[1] Abant Izzet Baysal Univ, Fac Sci & Arts, Dept Math, TR-14030 Golkoy Bolu, Turkey
关键词
q-Bernstein-Durrmeyer operators; pointwise approximation; right and left q-derivatives; convergence rate; bounded variation; APPROXIMATION PROPERTIES; CONVERGENCE;
D O I
10.32513/tbilisi/1578020576
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper we shall investigate the pointwise approximation properties of the q analogue of the Bernstein-Durrmeyer operators and estimate the rate of pointwise convergence of these operators to the functions f whose q-derivatives are bounded variation on the interval [0, 1]. We give an estimate for the rate of convergence of the operator (L-n, (q)f) at those points x at which the one sided q-derivatives D-q(+) f(x), D-q(-) f(x)exist. We shall also prove that the operators L-n, (q)f converges to the limit f (x). To the best of my knowledge, the present study will be the first study on the approximation of q- operators in the space of DqBV
引用
收藏
页码:189 / 204
页数:16
相关论文
共 50 条
  • [21] APPROXIMATION PROPERTIES OF TWO-DIMENSIONAL q-BERNSTEIN-CHLODOWSKY-DURRMEYER OPERATORS
    Buyukyazici, Ibrahim
    Sharma, Honey
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (12) : 1351 - 1371
  • [22] BERNSTEIN-DURRMEYER OPERATORS
    ADELL, JA
    DELACAL, J
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1995, 30 (3-6) : 1 - 14
  • [23] On Genuine Bernstein–Durrmeyer Operators
    Heiner Gonska
    Daniela Kacsó
    Ioan Raşa
    Results in Mathematics, 2007, 50 : 213 - 225
  • [24] Approximation properties of Bernstein-Durrmeyer type operators
    Cardenas-Morales, D.
    Garrancho, P.
    Rasa, I.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1 - 8
  • [25] Approximation Properties by Bernstein-Durrmeyer Type Operators
    Gupta, Vijay
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (02) : 363 - 374
  • [26] Some approximation properties of (p, q)-Bernstein operators
    Kang, Shin Min
    Rafiq, Arif
    Acu, Ana-Maria
    Ali, Faisal
    Kwun, Young Chel
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [27] On approximation properties of some non-positive Bernstein-Durrmeyer type operators
    Vasian, Bianca Ioana
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2023, 31 (01): : 251 - 269
  • [28] The Eigenstructure of Operators Linking the Bernstein and the Genuine Bernstein–Durrmeyer operators
    Heiner Gonska
    Ioan Raşa
    Elena-Dorina Stănilă
    Mediterranean Journal of Mathematics, 2014, 11 : 561 - 576
  • [29] SOME APPROXIMATION THEOREMS FOR MODIFIED BERNSTEIN-DURRMEYER OPERATORS
    Li Song (Zhejiang University
    ApproximationTheoryandItsApplications, 1994, (04) : 1 - 12
  • [30] On the Durrmeyer variant of q-Bernstein operators based on the shape parameter λ
    Su, Lian-Ta
    Aslan, Resat
    Zheng, Feng-Song
    Mursaleen, M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)