Synthesis and Thermal Responses of Polygonal Poly(ethylene glycol) Analogues

被引:4
作者
Kawasaki, Shunichi [1 ,2 ]
Muraoka, Takahiro [1 ,3 ]
Hamada, Tsutomu [4 ]
Shigyou, Kazuki [4 ]
Nagatsugi, Fumi [2 ]
Kinbara, Kazushi [1 ,2 ]
机构
[1] Tokyo Inst Technol, Grad Sch Biosci & Biotechnol, Midori Ku, 4259 Nagatsuta Cho, Yokohama, Kanagawa 2268503, Japan
[2] Tohoku Univ, Inst Multidisciplinary Res Adv Mat, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[3] Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[4] Japan Adv Inst Sci & Technol, Sch Mat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
关键词
aggregation; conformational changes; macrocycles; poly(ethylene glycol); topology; NONIONIC SURFACTANTS; POLYMERIZATION; CORE; PEG;
D O I
10.1002/asia.201501381
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a new type of topological poly(ethylene glycol) (PEG) analogue, a series of polygonal PEGs with digonal to hexagonal structures were developed. Polygonal PEGs with structures between the digonal and tetragonal types showed molecular-level dispersion in water at 20 degrees C, whereas the pentagonal and hexagonal PEGs aggregated, which is suggestive of enhanced hydrophobicity by ring expansion. Heating induced conformational changes in the polygonal PEGs and increased their hydrophobicity. Among the polygonal PEGs, only the trigonal and hexagonal PEGs showed a distinct thermal response to form and increase the size of the aggregates, respectively. Given that tetragonal and pentagonal PEGs only marginally responded to heat treatment, the thermal responses are likely due to a topological effect. At low temperatures, the larger polygonal PEGs are more restricted despite the expanded rings. The trigonal PEG showed the largest change in mobility, whereas the tetragonal PEG exhibited the smallest change. Hence, the topology of the polygonal PEGs influences the intramolecular packing and the local dynamics.
引用
收藏
页码:1028 / 1035
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 1976, POLYETHYLENE OXIDE
[2]  
Bednarek M, 1999, MACROMOL RAPID COMM, V20, P369, DOI 10.1002/(SICI)1521-3927(19990701)20:7<369::AID-MARC369>3.3.CO
[3]  
2-J
[4]  
Bjoerling M, 1991, J PHYS CHEM-US, V95, P6706, DOI 10.1021/j100170a060
[5]  
Chinachoti P, 2006, MODERN MAGNETIC RE 3, P1703
[6]   Crystallinity and Chain Conformation in PEO/Layered Silicate Nanocomposites [J].
Chrissopoulou, K. ;
Andrikopoulos, K. S. ;
Fotiadou, S. ;
Bollas, S. ;
Karageorgaki, C. ;
Christofilos, D. ;
Voyiatzis, G. A. ;
Anastasiadis, S. H. .
MACROMOLECULES, 2011, 44 (24) :9710-9722
[7]  
CLELAND JL, 1992, J BIOL CHEM, V267, P13327
[8]   Toward an easy access to dendrimer-like poly(ethylene oxide)s [J].
Feng, XS ;
Taton, D ;
Chaikof, EL ;
Gnanou, Y .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (31) :10956-10966
[9]   Hyperbranched poly(ethylene glycol)s: A new class of ion-conducting materials [J].
Hawker, CJ ;
Chu, FK ;
Pomery, PJ ;
Hill, DJT .
MACROMOLECULES, 1996, 29 (11) :3831-3838
[10]   An alternative synthetic approach toward dendritic macromolecules:: Novel benzene-core dendrimers via alkyne cyclotrimerization [J].
Hecht, S ;
Fréchet, JMJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (16) :4084-4085