HOMOGENIZATION OF VARIATIONAL FUNCTIONALS WITH NONSTANDARD GROWTH IN PERFORATED DOMAINS

被引:4
作者
Amaziane, Brahim [1 ]
Pankratov, Leonid [2 ]
Piatnitski, Andrey [3 ,4 ]
机构
[1] Univ Pau, CNRS, UMR5142, Lab Math & Leurs Applicat, F-64000 Pau, France
[2] B Verkin Inst Low Temp Phys & Engn, Dept Math, UA-61103 Kharkov, Ukraine
[3] RAS, PN Lebedev Phys Inst, Moscow 119991, Russia
[4] Narvik Univ Coll, N-8505 Narvik, Norway
关键词
Homogenization; perforated domains; variational problem; nonstandard growth condition; VARIABLE EXPONENT; ELLIPTIC-EQUATIONS; EXISTENCE; SPACES; LOCALIZATION;
D O I
10.3934/nhm.2010.5.189
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to study the asymptotic behavior of solutions to a Neumann boundary value problem for a nonlinear elliptic equation with nonstandard growth condition of the form - div (vertical bar del u(epsilon)vertical bar(p epsilon(x)-2) del u(epsilon)) + vertical bar del u(epsilon)vertical bar(p epsilon(x)-2) u(epsilon) = f (x) in a perforated domain Omega(epsilon), epsilon being a small parameter that characterizes the microscopic length scale of the microstructure. Under the assumption that the functions p(epsilon)(x) converge uniformly to a limit function p(0)(x) and that p0 satisfy certain logarithmic uniform continuity condition, it is shown that u(epsilon) converges, as epsilon -> 0, to a solution of homogenized equation whose coefficients are calculated in terms of local energy characteristics of the domain Omega(epsilon). This result is then illustrated with periodic and locally periodic examples.
引用
收藏
页码:189 / 215
页数:27
相关论文
共 38 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   AN EXTENSION THEOREM FROM CONNECTED SETS, AND HOMOGENIZATION IN GENERAL PERIODIC DOMAINS [J].
ACERBI, E ;
PIAT, VC ;
DALMASO, G ;
PERCIVALE, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (05) :481-496
[3]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[4]   Form estimates for the p(x)-laplacean [J].
Allegretto, W. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (07) :2177-2185
[5]   Γ-convergence and homogenization of functionals in Sobolev spaces with variable exponents [J].
Amaziane, B. ;
Antontsev, S. ;
Pankratov, L. ;
Piatnitski, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :1192-1202
[6]   Homogenization of a convection-diffusion equation in perforated domains with a weak adsorption [J].
Amaziane, B. ;
Goncharenko, M. ;
Pankratov, L. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2007, 58 (04) :592-611
[7]   Homogenization of p-Laplacian in perforated domain [J].
Amaziane, B. ;
Antontsev, S. ;
Pankratov, L. ;
Piatnitski, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06) :2457-2479
[8]   Homogenization of a class of nonlinear elliptic equations with nonstandard growth [J].
Amaziane, Brahim ;
Antontsev, Stanislav ;
Pankratov, Leonid .
COMPTES RENDUS MECANIQUE, 2007, 335 (03) :138-143
[9]  
[Anonymous], 1998, Homogenization of multiple integrals
[10]  
[Anonymous], 1995, RUSSIAN J MATH PHYS