Closed curves of global bifurcations in Chua's equation:: A mechanism for their formation

被引:12
作者
Algaba, A
Merino, M
Fernández-Sánchez, F
Rodríguez-Luis, AJ
机构
[1] Univ Huelva, E Politecn Sup, Dept Math, La Rabida 21819, Huelva, Spain
[2] Univ Seville, ES Ingenieros, Dept Appl Math 2, Seville 41092, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2003年 / 13卷 / 03期
关键词
global bifurcations; T-point; Chua's equation;
D O I
10.1142/S0218127403006789
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, the presence of closed bifurcation curves of homoclinic and heteroclinic connections has been detected in Chua's equation. We have numerically found and qualitatively described the mechanism of the formation/destruction of such closed curves. We relate this phenomenon to a failure of transversality in a curve of T-points in a three-dimensional parameter space.
引用
收藏
页码:609 / 616
页数:8
相关论文
共 19 条
[1]   On the Hopf-pitchfork bifurcation in the Chua's equation [J].
Algaba, A ;
Merino, M ;
Freire, E ;
Gamero, E ;
Rodríguez-Luis, AJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (02) :291-305
[2]   Some results on Chua's equation near a triple-zero linear degeneracy [J].
Algaba, A ;
Merino, M ;
Freire, E ;
Gamero, E ;
Rodríguez-Luis, AJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (03) :583-608
[3]   Nontransversal curves of T-points:: a source of closed curves of global bifurcations [J].
Algaba, A ;
Fernández-Sánchez, F ;
Freire, E ;
Merino, M ;
Rodríguez-Luis, AJ .
PHYSICS LETTERS A, 2002, 303 (2-3) :204-211
[4]   Takens-Bogdanov bifurcations of periodic orbits and Arnold's tongues in a three-dimensional electronic model [J].
Algaba, A ;
Merino, M ;
Rodríguez-Luis, AJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02) :513-531
[5]  
[Anonymous], 1997, AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations, user's Manual
[6]   THE BIFURCATIONS OF SEPARATRIX CONTOURS AND CHAOS [J].
BYKOV, VV .
PHYSICA D, 1993, 62 (1-4) :290-299
[7]   The non-transverse Shil'nikov-Hopf bifurcation:: uncoupling of homoclinic orbits and homoclinic tangencies [J].
Champneys, AR ;
Rodríguez-Luis, AJ .
PHYSICA D, 1999, 128 (2-4) :130-158
[8]   NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-2 HOMOCLINIC BIFURCATIONS [J].
CHAMPNEYS, AR ;
KUZNETSOV, YA .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (04) :785-822
[9]   NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (I) BIFURCATION IN FINITE DIMENSIONS [J].
Doedel, Eusebius ;
Keller, Herbert B. ;
Kernevez, Jean Pierre .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03) :493-520
[10]   Isolas, cusps and global bifurcations in an electronic oscillator [J].
Fernandez-Sanchez, F ;
Freire, E ;
Rodriguez-Luis, AJ .
DYNAMICS AND STABILITY OF SYSTEMS, 1997, 12 (04) :319-336