Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy

被引:132
作者
Briggs, Natalie [1 ,2 ,3 ]
Bersch, Brian [1 ,2 ]
Wang, Yuanxi [2 ,3 ]
Jiang, Jue [4 ]
Koch, Roland J. [5 ,6 ]
Nayir, Nadire [3 ,7 ]
Wang, Ke [8 ]
Kolmer, Marek [9 ]
Ko, Wonhee [9 ]
Duran, Ana De La Fuente [1 ]
Subramanian, Shruti [1 ,2 ]
Dong, Chengye [1 ,2 ]
Shallenberger, Jeffrey [8 ]
Fu, Mingming [9 ]
Zou, Qiang [9 ]
Chuang, Ya-Wen [4 ]
Gai, Zheng [9 ]
Li, An-Ping [9 ]
Bostwick, Aaron [5 ]
Jozwiak, Chris [5 ]
Chang, Cui-Zu [4 ]
Rotenberg, Eli [5 ]
Zhu, Jun [2 ,4 ]
van Duin, Adri C. T. [1 ,3 ,7 ,8 ,10 ,11 ,12 ]
Crespi, Vincent [2 ,3 ,4 ,8 ]
Robinson, Joshua A. [1 ,2 ,3 ,8 ,13 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr 2 Dimens & Layered Mat, University Pk, PA 16802 USA
[3] Penn State Univ, 2 Dimens Crystal Consortium, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[5] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[6] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA
[7] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[8] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[9] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[10] Penn State Univ, Dept Chem, University Pk, PA USA
[11] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[12] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[13] Penn State Univ, Ctr Atomically Thin Multifunct Coatings, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
TRANSITION-TEMPERATURE; SUPERCONDUCTING TRANSITION; GRAPHENE; GALLIUM; PSEUDOPOTENTIALS; MORPHOLOGY; PHASE;
D O I
10.1038/s41563-020-0631-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.
引用
收藏
页码:637 / +
页数:9
相关论文
共 50 条
  • [41] Half metallicity and long-range magnetic order in graphene/hematene van der Waals heterostructure
    Renu Singla
    Manish K. Kashyap
    Indian Journal of Physics, 2022, 96 : 1963 - 1968
  • [42] Half metallicity and long-range magnetic order in graphene/hematene van der Waals heterostructure
    Singla, R.
    Kashyap, M. K.
    INDIAN JOURNAL OF PHYSICS, 2022, 96 (07) : 1963 - 1968
  • [43] Constructing van der Waals Heterogeneous Photocatalysts Based on Atomically Thin Carbon Nitride Sheets and Graphdiyne for Highly Efficient Photocatalytic Conversion of CO2 into CO
    Wang, Yong
    Zhang, Yu
    Wang, Yongmei
    Zeng, Chengxin
    Sun, Mei
    Yang, Dingyi
    Cao, Ke
    Pan, Hongzhe
    Wu, Yizhang
    Liu, Hong
    Yang, Rusen
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (34) : 40629 - 40637
  • [44] High-throughput screening of phase-engineered atomically thin transition-metal dichalcogenides for van der Waals contacts at the Schottky-Mott limit
    Li, Yanyan
    Su, Liqin
    Lu, Yanan
    Luo, Qingyuan
    Liang, Pei
    Shu, Haibo
    Chen, Xiaoshuang
    INFOMAT, 2023, 5 (07)
  • [45] Van der Waals enabled formation and integration of ultrathin high-κ dielectrics on 2D semiconductors
    Sebek, Matej
    Wang, Zeng
    West, Norton Glen
    Yang, Ming
    Neo, Darren Chi Jin
    Su, Xiaodi
    Wang, Shijie
    Pan, Jisheng
    Thanh, Nguyen Thi Kim
    Teng, Jinghua
    NPJ 2D MATERIALS AND APPLICATIONS, 2024, 8 (01)
  • [46] 0.5T0.5R-An Ultracompact RRAM Cell Uniquely Enabled by van der Waals Heterostructures
    Zhang, Dujiao
    Yeh, Chao-Hui
    Cao, Wei
    Banerjee, Kaustav
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (04) : 2033 - 2040
  • [47] Multimodal spectromicroscopy of monolayer WS2 enabled by ultra-clean van der Waals epitaxy
    Kastl, C.
    Chen, C. T.
    Koch, R. J.
    Schuler, B.
    Kuykendall, T. R.
    Bostwick, A.
    Jozwiak, C.
    Seyller, T.
    Rotenberg, E.
    Weber-Bargioni, A.
    Aloni, S.
    Schwartzberg, A. M.
    2D MATERIALS, 2018, 5 (04):
  • [48] Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors
    Wang, Yan
    Kim, Jong Chan
    Wu, Ryan J.
    Martinez, Jenny
    Song, Xiuju
    Yang, Jieun
    Zhao, Fang
    Mkhoyan, K. Andre
    Jeong, Hu Young
    Chhowalla, Manish
    NATURE, 2019, 568 (7750) : 70 - +
  • [49] Shear failure in supported two-dimensional nanosheet van der Waals thin films
    Castilho, Cintia J.
    Li, Dong
    Xie, Yiheng
    Gao, Huajian
    Hurt, Robert H.
    CARBON, 2021, 173 (173) : 410 - 418
  • [50] AlGaN UV Detector with Largely Enhanced Heat Dissipation on Mo Substrate Enabled by van der Waals Epitaxy
    Chen, Yang
    Zang, Hang
    Ben, Jianwei
    Zhang, Shanli
    Jiang, Ke
    Shi, Zhiming
    Jia, Yuping
    Liu, Mingrui
    Sun, Xiaojuan
    Li, Dabing
    CRYSTAL GROWTH & DESIGN, 2022, 23 (02) : 1162 - 1171