Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy

被引:132
作者
Briggs, Natalie [1 ,2 ,3 ]
Bersch, Brian [1 ,2 ]
Wang, Yuanxi [2 ,3 ]
Jiang, Jue [4 ]
Koch, Roland J. [5 ,6 ]
Nayir, Nadire [3 ,7 ]
Wang, Ke [8 ]
Kolmer, Marek [9 ]
Ko, Wonhee [9 ]
Duran, Ana De La Fuente [1 ]
Subramanian, Shruti [1 ,2 ]
Dong, Chengye [1 ,2 ]
Shallenberger, Jeffrey [8 ]
Fu, Mingming [9 ]
Zou, Qiang [9 ]
Chuang, Ya-Wen [4 ]
Gai, Zheng [9 ]
Li, An-Ping [9 ]
Bostwick, Aaron [5 ]
Jozwiak, Chris [5 ]
Chang, Cui-Zu [4 ]
Rotenberg, Eli [5 ]
Zhu, Jun [2 ,4 ]
van Duin, Adri C. T. [1 ,3 ,7 ,8 ,10 ,11 ,12 ]
Crespi, Vincent [2 ,3 ,4 ,8 ]
Robinson, Joshua A. [1 ,2 ,3 ,8 ,13 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr 2 Dimens & Layered Mat, University Pk, PA 16802 USA
[3] Penn State Univ, 2 Dimens Crystal Consortium, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[5] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[6] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA
[7] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[8] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[9] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[10] Penn State Univ, Dept Chem, University Pk, PA USA
[11] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[12] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[13] Penn State Univ, Ctr Atomically Thin Multifunct Coatings, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
TRANSITION-TEMPERATURE; SUPERCONDUCTING TRANSITION; GRAPHENE; GALLIUM; PSEUDOPOTENTIALS; MORPHOLOGY; PHASE;
D O I
10.1038/s41563-020-0631-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.
引用
收藏
页码:637 / +
页数:9
相关论文
共 50 条
  • [31] van der Waals Epitaxial Growth of Atomically Thin Bi2Se3 and Thickness-Dependent Topological Phase Transition
    Xu, Shuigang
    Han, Yu
    Chen, Xiaolong
    Wu, Zefei
    Wang, Lin
    Han, Tian-Yi
    Ye, Weiguang
    Lu, Huanhuan
    Long, Gen
    Wu, Yingying
    Lin, Jiangxiazi
    Cai, Yuan
    Ho, K. M.
    He, Yuheng
    Wang, Ning
    NANO LETTERS, 2015, 15 (04) : 2645 - 2651
  • [32] Electronic and vibrational properties of van der Waals heterostructures of vertically stacked few-layer atomically thin MoS2 and BP
    Ekuma, C. E.
    Najmaei, S.
    Dubey, M.
    MATERIALS TODAY COMMUNICATIONS, 2019, 19 : 383 - 392
  • [33] Anisotropic assembly and reorganization of noble metals on black phosphorus van der Waals template
    Lee, Kihyun
    Yoon, Jun-Yeong
    Lee, Sol
    Jang, Myeongjin
    Lee, Yangjin
    Kim, Kwanpyo
    CURRENT APPLIED PHYSICS, 2023, 51 : 98 - 103
  • [34] Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures
    Zhang, Kenan
    Zhang, Tianning
    Cheng, Guanghui
    Li, Tianxin
    Wang, Shuxia
    Wei, Wei
    Zhou, Xiaohao
    Yu, Weiwei
    Sun, Yan
    Wang, Peng
    Zhang, Dong
    Zeng, Changgan
    Wang, Xingjun
    Hu, Weida
    Fan, Hong Jin
    Shen, Guozhen
    Chen, Xin
    Duan, Xiangfeng
    Chang, Kai
    Dai, Ning
    ACS NANO, 2016, 10 (03) : 3852 - 3858
  • [35] Mixed-dimensional van der Waals heterostructure enabled gas sensors: fundamentals and applications
    Goel, Neeraj
    Utkarsha
    Kushwaha, Aditya
    Kwoka, Monika
    Kumar, Rahul
    Kumar, Mahesh
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (10) : 5642 - 5667
  • [36] Forming Stable van der Waals Contacts between Metals and 2D Semiconductors
    Kwon, Gihyeon
    Kim, Hyeon-Sik
    Jeong, Kwangsik
    Kim, Myeongjin
    Nam, Gi Hwan
    Park, Hyunjun
    Yoo, Kyunghwa
    Cho, Mann-Ho
    SMALL METHODS, 2023, 7 (09):
  • [37] Surface Charge Transfer Doping Enabled Large Hysteresis in van der Waals Heterostructures for Artificial Synapse
    Pan, Xuan
    Zheng, Yue
    Shi, Yumeng
    Chen, Wei
    ACS MATERIALS LETTERS, 2021, 3 (02): : 235 - 242
  • [38] Mixed-Dimensional Van der Waals Heterostructures Enabled Optoelectronic Synaptic Devices for Neuromorphic Applications
    Sun, Yilin
    Ding, Yingtao
    Xie, Dan
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (47)
  • [39] Near-field optics on flatland: from noble metals to van der Waals materials
    Duan, Jiahua
    Li, Yafeng
    Zhou, Yixi
    Cheng, Yuan
    Chen, Jianing
    ADVANCES IN PHYSICS-X, 2019, 4 (01):
  • [40] Enhanced van der Waals epitaxy via electron transfer enabled interfacial dative bond formation
    Xie, Weiyu
    Lu, Toh-Ming
    Wang, Gwo-Ching
    Bhat, Ishwara
    Zhang, Shengbai
    PHYSICAL REVIEW MATERIALS, 2017, 1 (06):