Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy

被引:132
作者
Briggs, Natalie [1 ,2 ,3 ]
Bersch, Brian [1 ,2 ]
Wang, Yuanxi [2 ,3 ]
Jiang, Jue [4 ]
Koch, Roland J. [5 ,6 ]
Nayir, Nadire [3 ,7 ]
Wang, Ke [8 ]
Kolmer, Marek [9 ]
Ko, Wonhee [9 ]
Duran, Ana De La Fuente [1 ]
Subramanian, Shruti [1 ,2 ]
Dong, Chengye [1 ,2 ]
Shallenberger, Jeffrey [8 ]
Fu, Mingming [9 ]
Zou, Qiang [9 ]
Chuang, Ya-Wen [4 ]
Gai, Zheng [9 ]
Li, An-Ping [9 ]
Bostwick, Aaron [5 ]
Jozwiak, Chris [5 ]
Chang, Cui-Zu [4 ]
Rotenberg, Eli [5 ]
Zhu, Jun [2 ,4 ]
van Duin, Adri C. T. [1 ,3 ,7 ,8 ,10 ,11 ,12 ]
Crespi, Vincent [2 ,3 ,4 ,8 ]
Robinson, Joshua A. [1 ,2 ,3 ,8 ,13 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr 2 Dimens & Layered Mat, University Pk, PA 16802 USA
[3] Penn State Univ, 2 Dimens Crystal Consortium, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[5] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[6] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA
[7] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[8] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[9] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[10] Penn State Univ, Dept Chem, University Pk, PA USA
[11] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[12] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[13] Penn State Univ, Ctr Atomically Thin Multifunct Coatings, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
TRANSITION-TEMPERATURE; SUPERCONDUCTING TRANSITION; GRAPHENE; GALLIUM; PSEUDOPOTENTIALS; MORPHOLOGY; PHASE;
D O I
10.1038/s41563-020-0631-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.
引用
收藏
页码:637 / +
页数:9
相关论文
共 50 条
  • [21] Integrating spin-based technologies with atomically controlled van der Waals interfaces
    Zhang, Wen
    Wong, Ping Kwan Johnny
    Jiang, Sheng
    Chen, Qian
    Huang, Wei
    Wee, Andrew Thye Shen
    MATERIALS TODAY, 2021, 51 : 350 - 364
  • [22] Resonant Metasurfaces with Van Der Waals Hyperbolic Nanoantennas and Extreme Light Confinement
    Babicheva, Viktoriia E.
    NANOMATERIALS, 2024, 14 (18)
  • [23] Light-induced Interfacial Phenomena in Atomically Thin 2D van der Waals Material Hybrids and Heterojunctions
    Li, Mingxing
    Chen, Jia-Shiang
    Cotlet, Mircea
    ACS ENERGY LETTERS, 2019, 4 (09): : 2323 - 2335
  • [24] Vapor-Phase Indium Intercalation in van der Waals Nanofibers of Atomically Thin W6Te6 Wires
    Natsui, Ryusuke
    Shimizu, Hiroshi
    Nakanishi, Yusuke
    Liu, Zheng
    Shimamura, Akito
    Hung, Nguyen Tuan
    Lin, Yung-Chang
    Endo, Takahiko
    Pu, Jiang
    Kikuchi, Iori
    Takenobu, Taishi
    Okada, Susumu
    Suenaga, Kazu
    Saito, Riichiro
    Miyata, Yasumitsu
    ACS NANO, 2023, 17 (06) : 5561 - 5569
  • [25] Van der Waals Heterostructures with Tunable Tunneling Behavior Enabled by MoO3 Surface Functionalization
    Wang, Yanan
    Xiang, Du
    Zheng, Yue
    Liu, Tao
    Ye, Xin
    Gao, Jing
    Yang, Hang
    Han, Cheng
    Chen, Wei
    ADVANCED OPTICAL MATERIALS, 2020, 8 (07):
  • [26] ELECTRONIC CONDUCTION MECHANISM IN VAN DER WAALS FLAKE THIN FILM
    Roy, Ajit K.
    Lee, Jonghoon
    Nepal, Dhriti
    Ferguson, John
    PROCEEDINGS OF ASME 2023 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2023, 2023,
  • [27] Artificially created interfacial states enabled van der Waals heterostructure memory device
    Xiang, Du
    Cao, Yi
    Wang, Kun
    Han, Zichao
    Liu, Tao
    Chen, Wei
    NANOTECHNOLOGY, 2022, 33 (17)
  • [28] Selective Growth of van der Waals Heterostructures Enabled by Electron-Beam Irradiation
    Sitek, Jakub
    Czerniak-Losiewicz, Karolina
    Gertych, Arkadiusz P.
    Giza, Malgorzata
    Dabrowski, Pawel
    Rogala, Maciej
    Wilczynski, Konrad
    Kaleta, Anna
    Kret, Slawomir
    Conran, Ben R.
    Wang, Xiaochen
    McAleese, Clifford
    Macha, Michal
    Radenovic, Aleksandra
    Zdrojek, Mariusz
    Pasternak, Iwona
    Strupinski, Wlodek
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (28) : 33838 - 33847
  • [29] Ultrafast Hot Carrier Cooling Enabled van der Waals Photodetectors at Telecom Wavelengths
    Zeng, Zhouxiaosong
    Wang, Yufan
    Michel, Patrick
    Strauss, Fabian
    Wang, Xiao
    Braun, Kai
    Scheele, Marcus
    NANO LETTERS, 2025, 25 (09) : 3497 - 3504
  • [30] Deep multiband photodetectors enabled by reconfigurable band alignment in van der Waals heterostructures
    Wang, Jinjin
    Fu, Xiao
    Chen, Xiaolong
    Liu, Guanyu
    Zhao, Qixiao
    Xu, Hangyu
    Chen, Fansheng
    Xu, Jianbin
    Bae, Sang-Hoon
    Zhou, Jiadong
    Dong, Lixin
    Bao, Wenzhong
    Di, Zengfeng
    Miao, Jinshui
    Hu, Weida
    OPTICA, 2024, 11 (06): : 791 - 798