Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy

被引:132
作者
Briggs, Natalie [1 ,2 ,3 ]
Bersch, Brian [1 ,2 ]
Wang, Yuanxi [2 ,3 ]
Jiang, Jue [4 ]
Koch, Roland J. [5 ,6 ]
Nayir, Nadire [3 ,7 ]
Wang, Ke [8 ]
Kolmer, Marek [9 ]
Ko, Wonhee [9 ]
Duran, Ana De La Fuente [1 ]
Subramanian, Shruti [1 ,2 ]
Dong, Chengye [1 ,2 ]
Shallenberger, Jeffrey [8 ]
Fu, Mingming [9 ]
Zou, Qiang [9 ]
Chuang, Ya-Wen [4 ]
Gai, Zheng [9 ]
Li, An-Ping [9 ]
Bostwick, Aaron [5 ]
Jozwiak, Chris [5 ]
Chang, Cui-Zu [4 ]
Rotenberg, Eli [5 ]
Zhu, Jun [2 ,4 ]
van Duin, Adri C. T. [1 ,3 ,7 ,8 ,10 ,11 ,12 ]
Crespi, Vincent [2 ,3 ,4 ,8 ]
Robinson, Joshua A. [1 ,2 ,3 ,8 ,13 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Ctr 2 Dimens & Layered Mat, University Pk, PA 16802 USA
[3] Penn State Univ, 2 Dimens Crystal Consortium, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Phys, 104 Davey Lab, University Pk, PA 16802 USA
[5] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA USA
[6] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA USA
[7] Penn State Univ, Dept Mech Engn, University Pk, PA 16802 USA
[8] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
[9] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
[10] Penn State Univ, Dept Chem, University Pk, PA USA
[11] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[12] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[13] Penn State Univ, Ctr Atomically Thin Multifunct Coatings, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
TRANSITION-TEMPERATURE; SUPERCONDUCTING TRANSITION; GRAPHENE; GALLIUM; PSEUDOPOTENTIALS; MORPHOLOGY; PHASE;
D O I
10.1038/s41563-020-0631-x
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are 'half van der Waals' metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.
引用
收藏
页码:637 / +
页数:9
相关论文
共 50 条
  • [1] Van der Waals oxide heteroepitaxy
    Chu, Ying-Hao
    NPJ QUANTUM MATERIALS, 2017, 2
  • [2] van der Waals Heteroepitaxy of Germanene Islands on Graphite
    Persichetti, Luca
    Jardali, Fatme
    Vach, Holger
    Sgarlata, Anna
    Berbezier, Isabelle
    De Crescenzi, Maurizio
    Balzarotti, Adalberto
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2016, 7 (16): : 3246 - 3251
  • [3] Atomically thin p-n junctions with van der Waals heterointerfaces
    Lee, Chul-Ho
    Lee, Gwan-Hyoung
    van der Zande, Arend M.
    Chen, Wenchao
    Li, Yilei
    Han, Minyong
    Cui, Xu
    Arefe, Ghidewon
    Nuckolls, Colin
    Heinz, Tony F.
    Guo, Jing
    Hone, James
    Kim, Philip
    NATURE NANOTECHNOLOGY, 2014, 9 (09) : 676 - 681
  • [4] Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures
    Lin, Yu-Chuan
    Ghosh, Ram Krishna
    Addou, Rafik
    Lu, Ning
    Eichfeld, Sarah M.
    Zhu, Hui
    Li, Ming-Yang
    Peng, Xin
    Kim, Moon J.
    Li, Lain-Jong
    Wallace, Robert M.
    Datta, Suman
    Robinson, Joshua A.
    NATURE COMMUNICATIONS, 2015, 6
  • [5] Probing interlayer shear thermal deformation in atomically-thin van der Waals layered materials
    Zhang, Le
    Wang, Han
    Zong, Xinrong
    Zhou, Yongheng
    Wang, Taihong
    Wang, Lin
    Chen, Xiaolong
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] Controlled Growth of Atomically Thin In2Se3 Flakes by van der Waals Epitaxy
    Lin, Min
    Wu, Di
    Zhou, Yu
    Huang, Wei
    Jiang, Wei
    Zheng, Wenshan
    Zhao, Shuli
    Jin, Chuanhong
    Guo, Yunfan
    Peng, Hailin
    Liu, Zhongfan
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) : 13274 - 13277
  • [7] Double-sided van der Waals epitaxy of topological insulators across an atomically thin membrane
    Park, Joon Young
    Shin, Young Jae
    Shin, Jeacheol
    Kim, Jehyun
    Jo, Janghyun
    Yoo, Hyobin
    Haei, Danial
    Hyun, Chohee
    Yun, Jiyoung
    Huber, Robert M.
    Gupta, Arijit
    Watanabe, Kenji
    Taniguchi, Takashi
    Park, Wan Kyu
    Shin, Hyeon Suk
    Kim, Miyoung
    Kim, Dohun
    Yi, Gyu-Chul
    Kim, Philip
    NATURE MATERIALS, 2025, 24 (03) : 399 - 405
  • [8] Controlled van der Waals Heteroepitaxy of InAs Nanowires on Carbon Honeycomb Lattices
    Hong, Young Joon
    Fukui, Takashi
    ACS NANO, 2011, 5 (09) : 7576 - 7584
  • [9] Tuning of the temperature dependence of the resonance frequency shift in atomically thin mechanical resonators with van der Waals heterojunctions
    Inoue, Taichi
    Mochizuki, Yuta
    Takei, Kuniharu
    Arie, Takayuki
    Akita, Seiji
    2D MATERIALS, 2018, 5 (04):
  • [10] Van der Waals epitaxy of tunable moires enabled by alloying
    Fortin-Deschenes, Matthieu
    Watanabe, Kenji
    Taniguchi, Takashi
    Xia, Fengnian
    NATURE MATERIALS, 2024, 23 (03) : 339 - 346