On Bernstein-type inequalities for martingales

被引:59
作者
Dzhaparidze, K [1 ]
van Zanten, JH [1 ]
机构
[1] CWI, NL-1090 CB Amsterdam, Netherlands
关键词
locally square integrable martingale; Bernstein inequality; multiplicative decomposition; exponential supermartingale; exponential inequality;
D O I
10.1016/S0304-4149(00)00086-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bernstein-type inequalities for local martingales are derived. The results extend a number of well-known exponential inequalities and yield an asymptotic inequality for a sequence of asymptotically continuous martingales. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 15 条
[1]  
[Anonymous], 1999, DECOUPLING
[2]  
BARLOW MT, 1986, P LOND MATH SOC, V52, P142
[4]  
Coquet F., 1994, MATH METHODS STAT, V3, P89
[5]  
COURBOT B, 1998, THESIS U RENNES 1
[6]  
de la Peña VH, 1999, ANN PROBAB, V27, P537
[7]   TAIL PROBABILITIES FOR MARTINGALES [J].
FREEDMAN, DA .
ANNALS OF PROBABILITY, 1975, 3 (01) :100-118
[8]   PROBABILITY INEQUALITIES FOR SUMS OF INDEPENDENT RANDOM-VARIABLES [J].
FUK, DK ;
NAGAEV, SV .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (04) :643-660
[9]   AN EXACT RATE OF CONVERGENCE IN THE FUNCTIONAL CENTRAL LIMIT-THEOREM FOR SPECIAL MARTINGALE DIFFERENCE ARRAYS [J].
HAEUSLER, E .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 65 (04) :523-534
[10]  
Jacod J., 2003, LIMIT THEOREMS STOCH