A posteriori error estimators for linear reduced-order models using Krylov-based integrators

被引:13
|
作者
Amsallem, D. [1 ]
Hetmaniuk, U. [2 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
projection-based model reduction; Petrov-Galerkin projection; error estimation; Krylov-based integrator; off-line; online decomposition; PROPER ORTHOGONAL DECOMPOSITION; COMPUTATIONAL-FLUID-DYNAMICS; REAL-TIME SOLUTION; BASIS APPROXIMATION; REDUCTION; EQUATIONS; SYSTEMS;
D O I
10.1002/nme.4753
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced-order models for linear time-invariant dynamical systems are considered, and the error between the full-order model and the reduced-order model solutions is characterized. Based on the analytical representation of the error, an a posteriori error indicator is proposed that combines a Krylov-based exponential integrator and an a posteriori residual-based estimate. Numerical experiments illustrate the quality of the error estimator. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1238 / 1261
页数:24
相关论文
共 50 条
  • [41] On error estimation for reduced-order modeling of linear non-parametric and parametric systems
    Feng, Lihong
    Benner, Peter
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (02): : 561 - 594
  • [42] REDUCED ORDER SUBOPTIMAL LINEAR QUADRATIC CONTROLLER USING KRYLOV SUBSPACE PROJECTION
    Mehrotra, Monica
    Chandra, Dinesh
    PROCEEDINGS OF THE 2015 39TH NATIONAL SYSTEMS CONFERENCE (NSC), 2015,
  • [43] Investigation of phase-field models of tumor growth based on a reduced-order meshless Galerkin method
    Abbaszadeh, Mostafa
    Dehghan, Mehdi
    Xiao, Dunhui
    ENGINEERING WITH COMPUTERS, 2024, 40 (04) : 2331 - 2347
  • [44] POD-based reduced-order models with deforming grids
    Anttonen, JSR
    King, PI
    Beran, PS
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 38 (1-2) : 41 - 62
  • [45] Reduced-order modelling in non-linear dynamics: an approach based on non-linear modes
    Mazzilli, C. E. N.
    Monticelli, G. C.
    Galan Neto, N. A.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2011, 225 (C10) : 2354 - 2368
  • [46] Bi-linear reduced-order models of structures with friction intermittent contacts
    Zucca, S.
    Epureanu, B. I.
    NONLINEAR DYNAMICS, 2014, 77 (03) : 1055 - 1067
  • [47] Towards simplified and optimized a posteriori error estimation using PGD reduced models
    Allier, Pierre-Eric
    Chamoin, Ludovic
    Ladeveze, Pierre
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (06) : 967 - 998
  • [48] Optimal control of linear systems with balanced reduced-order models: Perturbation approximations
    Daraghmeh, Adnan
    Qatanani, Naji
    Hartmann, Carsten
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 337 : 119 - 136
  • [49] Data-driven identification of interpretable reduced-order models using sparse regression
    Narasingam, Abhinav
    Sang-Il Kwon, Joseph
    COMPUTERS & CHEMICAL ENGINEERING, 2018, 119 : 101 - 111
  • [50] Construction of reduced-order models for fluid flows using deep feedforward neural networks
    Lui, Hugo F. S.
    Wolf, William R.
    JOURNAL OF FLUID MECHANICS, 2019, 872 : 963 - 994