A posteriori error estimators for linear reduced-order models using Krylov-based integrators

被引:13
作者
Amsallem, D. [1 ]
Hetmaniuk, U. [2 ]
机构
[1] Stanford Univ, Dept Aeronaut & Astronaut, Stanford, CA 94305 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
关键词
projection-based model reduction; Petrov-Galerkin projection; error estimation; Krylov-based integrator; off-line; online decomposition; PROPER ORTHOGONAL DECOMPOSITION; COMPUTATIONAL-FLUID-DYNAMICS; REAL-TIME SOLUTION; BASIS APPROXIMATION; REDUCTION; EQUATIONS; SYSTEMS;
D O I
10.1002/nme.4753
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reduced-order models for linear time-invariant dynamical systems are considered, and the error between the full-order model and the reduced-order model solutions is characterized. Based on the analytical representation of the error, an a posteriori error indicator is proposed that combines a Krylov-based exponential integrator and an a posteriori residual-based estimate. Numerical experiments illustrate the quality of the error estimator. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1238 / 1261
页数:24
相关论文
共 36 条
[11]   EFFICIENT SOLUTION OF PARABOLIC EQUATIONS BY KRYLOV APPROXIMATION METHODS [J].
GALLOPOULOS, E ;
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (05) :1236-1264
[12]   A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations [J].
Grepl, MA ;
Patera, AT .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (01) :157-181
[13]  
Grimme E.J., 1997, Ph.D. thesis
[14]   RUDUCTION OF STIFFNESS AND MASS MATRICES [J].
GUYAN, RJ .
AIAA JOURNAL, 1965, 3 (02) :380-&
[15]   Reduced basis method for finite volume approximations of parametrized linear evolution equations [J].
Haasdonk, Bernard ;
Ohlberger, Mario .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (02) :277-302
[16]   Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition [J].
Haasdonk, Bernard ;
Ohlberger, Mario .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2011, 17 (02) :145-161
[17]   Enhanced proper orthogonal decomposition for the modal analysis of homogeneous structures [J].
Han, S ;
Feeny, BF .
JOURNAL OF VIBRATION AND CONTROL, 2002, 8 (01) :19-40
[18]   Exponential integrators for large systems of differential equations [J].
Hochbruck, M ;
Lubich, C ;
Selhofer, H .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (05) :1552-1574
[19]  
Hochbruck M, 2010, ACTA NUMER, V19, P209, DOI 10.1017/S0962492910000048
[20]   Error estimation for reduced-order models of dynamical systems [J].
Homescu, C ;
Petzold, LR ;
Serban, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) :1693-1714